Files
git.stella-ops.org/docs/modules/analytics/architecture.md
2026-01-22 19:08:46 +02:00

297 lines
14 KiB
Markdown

# Analytics Module Architecture
## Design Philosophy
The Analytics module implements a **star-schema data warehouse** pattern optimized for analytical queries rather than transactional workloads. Key design principles:
1. **Separation of concerns**: Analytics schema is isolated from operational schemas (scanner, vex, proof_system)
2. **Pre-computation**: Expensive aggregations computed in advance via materialized views
3. **Audit trail**: Raw payloads preserved for reprocessing and compliance
4. **Determinism**: Normalization functions are immutable and reproducible; array aggregates are ordered for stable outputs
5. **Incremental updates**: Supports both full refresh and incremental ingestion
## Data Flow
```
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Scanner │ │ Concelier │ │ Attestor │
│ (SBOM) │ │ (Vuln) │ │ (DSSE) │
└──────┬──────┘ └──────┬──────┘ └──────┬──────┘
│ │ │
│ SBOM Ingested │ Vuln Updated │ Attestation Created
▼ ▼ ▼
┌──────────────────────────────────────────────────────┐
│ AnalyticsIngestionService │
│ - Normalize components (PURL, supplier, license) │
│ - Upsert to unified registry │
│ - Correlate with vulnerabilities │
│ - Store raw payloads │
└──────────────────────────────────────────────────────┘
┌──────────────────────────────────────────────────────┐
│ analytics schema │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌────────────┐ │
│ │components│ │artifacts│ │comp_vuln│ │attestations│ │
│ └─────────┘ └─────────┘ └─────────┘ └────────────┘ │
└──────────────────────────────────────────────────────┘
│ Daily refresh
┌──────────────────────────────────────────────────────┐
│ Materialized Views │
│ mv_supplier_concentration | mv_license_distribution │
│ mv_vuln_exposure | mv_attestation_coverage │
└──────────────────────────────────────────────────────┘
┌──────────────────────────────────────────────────────┐
│ Platform API Endpoints │
│ (with 5-minute caching) │
└──────────────────────────────────────────────────────┘
```
## Normalization Rules
### PURL Parsing
Package URLs (PURLs) are the canonical identifier for components. The `parse_purl()` function extracts:
| Field | Example | Notes |
|-------|---------|-------|
| `purl_type` | `maven`, `npm`, `pypi` | Ecosystem identifier |
| `purl_namespace` | `org.apache.logging` | Group/org/scope (optional) |
| `purl_name` | `log4j-core` | Package name |
| `purl_version` | `2.17.1` | Version string |
### Supplier Normalization
The `normalize_supplier()` function standardizes supplier names for consistent grouping:
1. Convert to lowercase
2. Trim whitespace
3. Remove legal suffixes: Inc., LLC, Ltd., Corp., GmbH, B.V., S.A., PLC, Co.
4. Normalize internal whitespace
**Examples:**
- `"Apache Software Foundation, Inc."``"apache software foundation"`
- `"Google LLC"``"google"`
- `" Microsoft Corp. "``"microsoft"`
### License Categorization
The `categorize_license()` function maps SPDX expressions to risk categories:
| Category | Examples | Risk Level |
|----------|----------|------------|
| `permissive` | MIT, Apache-2.0, BSD-3-Clause, ISC | Low |
| `copyleft-weak` | LGPL-2.1, MPL-2.0, EPL-2.0 | Medium |
| `copyleft-strong` | GPL-3.0, AGPL-3.0, SSPL | High |
| `proprietary` | Proprietary, Commercial | Review Required |
| `unknown` | Unrecognized expressions | Review Required |
**Special handling:**
- GPL with exceptions (e.g., `GPL-2.0 WITH Classpath-exception-2.0`) → `copyleft-weak`
- Dual-licensed (e.g., `MIT OR Apache-2.0`) → uses first match
## Component Deduplication
Components are deduplicated by `(purl, hash_sha256)`:
1. If same PURL and hash: existing record updated (last_seen_at, counts)
2. If same PURL but different hash: new record created (version change)
3. If same hash but different PURL: new record (aliased package)
**Upsert pattern:**
```sql
INSERT INTO analytics.components (...)
VALUES (...)
ON CONFLICT (purl, hash_sha256) DO UPDATE SET
last_seen_at = now(),
sbom_count = components.sbom_count + 1,
updated_at = now();
```
## Vulnerability Correlation
When a component is upserted, the `VulnerabilityCorrelationService` queries Concelier for matching advisories:
1. Query by PURL type + namespace + name
2. Filter by version range matching
3. Upsert to `component_vulns` with severity, EPSS, KEV flags
**Version range matching** currently supports semver ranges and exact matches via
`VersionRuleEvaluator`. Non-semver schemes fall back to exact string matches; wildcard
and ecosystem-specific ranges require upstream normalization.
## VEX Override Logic
The `mv_vuln_exposure` view implements VEX-adjusted counts:
```sql
-- Effective count excludes artifacts with active VEX overrides
COUNT(DISTINCT ac.artifact_id) FILTER (
WHERE NOT EXISTS (
SELECT 1 FROM analytics.vex_overrides vo
WHERE vo.artifact_id = ac.artifact_id
AND vo.vuln_id = cv.vuln_id
AND vo.status = 'not_affected'
AND (vo.valid_until IS NULL OR vo.valid_until > now())
)
) AS effective_artifact_count
```
**Override validity:**
- `valid_from`: When the override became effective
- `valid_until`: Expiration (NULL = no expiration)
- Only `status = 'not_affected'` reduces exposure counts, and only when the override is active in its validity window.
## Attestation Ingestion
Attestation ingestion consumes Attestor Rekor entry events and expects Sigstore bundles
or raw DSSE envelopes. The ingestion service:
- Resolves bundle URIs using `BundleUriTemplate`; `bundle:{digest}` maps to
`cas://<DefaultBucket>/{digest}` by default.
- Decodes DSSE payloads, computes `dsse_payload_hash`, and records `predicate_uri` plus
Rekor log metadata (`rekor_log_id`, `rekor_log_index`).
- Uses in-toto `subject` digests to link artifacts when reanalysis hints are absent.
- Maps predicate URIs into `analytics_attestation_type` values
(`provenance`, `sbom`, `vex`, `build`, `scan`, `policy`).
- Expands VEX statements into `vex_overrides` rows, one per product reference, and
captures optional validity timestamps when provided.
## Time-Series Rollups
Daily rollups computed by `compute_daily_rollups()`:
**Vulnerability counts** (per environment/team/severity):
- `total_vulns`: All affecting vulnerabilities
- `fixable_vulns`: Vulns with `fix_available = TRUE`
- `vex_mitigated`: Vulns with active `not_affected` override
- `kev_vulns`: Vulns in CISA KEV
- `unique_cves`: Distinct CVE IDs
- `affected_artifacts`: Artifacts containing affected components
- `affected_components`: Components with affecting vulns
**Component counts** (per environment/team/license/type):
- `total_components`: Distinct components
- `unique_suppliers`: Distinct normalized suppliers
**Retention policy:** 90 days in hot storage; `compute_daily_rollups()` prunes older rows and downstream jobs archive to cold storage.
## Materialized View Refresh
All materialized views support `REFRESH ... CONCURRENTLY` for zero-downtime updates:
```sql
-- Refresh all views (non-concurrent; run off-peak)
SELECT analytics.refresh_all_views();
```
**Refresh schedule (recommended):**
- `mv_supplier_concentration`: 02:00 UTC daily
- `mv_license_distribution`: 02:15 UTC daily
- `mv_vuln_exposure`: 02:30 UTC daily
- `mv_attestation_coverage`: 02:45 UTC daily
- `compute_daily_rollups()`: 03:00 UTC daily
Platform WebService can run the daily rollup + refresh loop via
`PlatformAnalyticsMaintenanceService`. Configure the schedule with:
- `Platform:AnalyticsMaintenance:Enabled` (default `true`)
- `Platform:AnalyticsMaintenance:IntervalMinutes` (default `1440`)
- `Platform:AnalyticsMaintenance:RunOnStartup` (default `true`)
- `Platform:AnalyticsMaintenance:ComputeDailyRollups` (default `true`)
- `Platform:AnalyticsMaintenance:RefreshMaterializedViews` (default `true`)
- `Platform:AnalyticsMaintenance:BackfillDays` (default `0`, set to `0` to disable; recompute the most recent N days on the first maintenance run)
The hosted service issues concurrent refresh statements directly for each view.
Use a DB scheduler (pg_cron) or external orchestrator if you need the staggered
per-view timing above.
## Performance Considerations
### Indexing Strategy
| Table | Key Indexes | Query Pattern |
|-------|-------------|---------------|
| `components` | `purl`, `supplier_normalized`, `license_category` | Lookup, aggregation |
| `artifacts` | `digest`, `environment`, `team` | Lookup, filtering |
| `component_vulns` | `vuln_id`, `severity`, `fix_available` | Join, filtering |
| `attestations` | `artifact_id`, `predicate_type` | Join, aggregation |
| `vex_overrides` | `(artifact_id, vuln_id)`, `status` | Subquery exists |
### Query Performance Targets
| Query | Target | Notes |
|-------|--------|-------|
| `sp_top_suppliers(20, 'prod')` | < 100ms | Uses materialized view when env is null; env filter reads base tables |
| `sp_license_heatmap('prod')` | < 100ms | Uses materialized view when env is null; env filter reads base tables |
| `sp_vuln_exposure()` | < 200ms | Uses materialized view for global queries; environment filters read base tables |
| `sp_fixable_backlog()` | < 500ms | Live query with indexes |
| `sp_attestation_gaps()` | < 100ms | Uses materialized view |
### Caching Strategy
Platform API endpoints use a 5-minute TTL cache:
- Cache key: endpoint + query parameters
- Invalidation: Time-based only (no event-driven invalidation)
- Storage: Valkey (in-memory)
## Security Considerations
### Schema Permissions
```sql
-- Read-only role for dashboards
GRANT USAGE ON SCHEMA analytics TO dashboard_reader;
GRANT SELECT ON ALL TABLES IN SCHEMA analytics TO dashboard_reader;
GRANT SELECT ON ALL SEQUENCES IN SCHEMA analytics TO dashboard_reader;
-- Write role for ingestion service
GRANT USAGE ON SCHEMA analytics TO analytics_writer;
GRANT SELECT, INSERT, UPDATE ON ALL TABLES IN SCHEMA analytics TO analytics_writer;
GRANT USAGE, SELECT ON ALL SEQUENCES IN SCHEMA analytics TO analytics_writer;
```
### Data Classification
| Table | Classification | Notes |
|-------|----------------|-------|
| `components` | Internal | Contains package names, versions |
| `artifacts` | Internal | Contains image names, team names |
| `component_vulns` | Internal | Vulnerability data (public CVEs) |
| `vex_overrides` | Confidential | Contains justifications, operator IDs |
| `raw_sboms` | Confidential | Full SBOM payloads |
| `raw_attestations` | Confidential | Signed attestation envelopes |
### Audit Trail
All tables include `created_at` and `updated_at` timestamps. Raw payload tables (`raw_sboms`, `raw_attestations`) are append-only with content hashes for integrity verification.
## Integration Points
### Upstream Dependencies
| Service | Event | Contract | Action |
|---------|-------|----------|--------|
| Scanner | SBOM report ready | `scanner.event.report.ready@1` (`docs/modules/signals/events/orchestrator-scanner-events.md`) | Normalize and upsert components |
| Concelier | Advisory observation/linkset updated | `advisory.observation.updated@1` (`docs/modules/concelier/events/advisory.observation.updated@1.schema.json`), `advisory.linkset.updated@1` (`docs/modules/concelier/events/advisory.linkset.updated@1.md`) | Re-correlate affected components |
| Excititor | VEX statement changes | `vex.statement.*` (`docs/modules/excititor/architecture.md`) | Create/update vex_overrides |
| Attestor | Rekor entry logged | `rekor.entry.logged` (`docs/modules/attestor/architecture.md`) | Upsert attestation record |
### Downstream Consumers
| Consumer | Data | Endpoint |
|----------|------|----------|
| Console UI | Dashboard data | `/api/analytics/*` |
| Export Center | Compliance reports | Direct DB query |
| AdvisoryAI | Risk context | `/api/analytics/vulnerabilities` |
## Future Enhancements
1. **Partitioning**: Partition `daily_*` tables by date for faster queries and archival
2. **Incremental refresh**: Implement incremental materialized view refresh for large datasets
3. **Custom dimensions**: Support user-defined component groupings (business units, cost centers)
4. **Predictive analytics**: Add ML-based risk prediction using historical trends
5. **BI tool integration**: Direct connectors for Tableau, Looker, Metabase