18 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	component_architecture_excititor.md — Stella Ops Excititor (2025Q4)
Scope. This document specifies the Excititor service: its purpose, trust model, data structures, APIs, plug‑in contracts, storage schema, normalization/consensus algorithms, performance budgets, testing matrix, and how it integrates with Scanner, Policy, Concelier, and the attestation chain. It is implementation‑ready.
0) Mission & role in the platform
Mission. Convert heterogeneous VEX statements (OpenVEX, CSAF VEX, CycloneDX VEX; vendor/distro/platform sources) into canonical, queryable claims; compute deterministic consensus per (vuln, product); preserve conflicts with provenance; publish stable, attestable exports that the backend uses to suppress non‑exploitable findings, prioritize remaining risk, and explain decisions.
Boundaries.
- Excititor does not decide PASS/FAIL. It supplies evidence (statuses + justifications + provenance weights).
- Excititor preserves conflicting claims unchanged; consensus encodes how we would pick, but the raw set is always exportable.
- VEX consumption is backend‑only: Scanner never applies VEX. The backend’s Policy Engine asks Excititor for status evidence and then decides what to show.
1) Inputs, outputs & canonical domain
1.1 Accepted input formats (ingest)
- OpenVEX JSON documents (attested or raw).
- CSAF VEX 2.x (vendor PSIRTs and distros commonly publish CSAF).
- CycloneDX VEX 1.4+ (standalone VEX or embedded VEX blocks).
- OCI‑attached attestations (VEX statements shipped as OCI referrers) — optional connectors.
All connectors register source metadata: provider identity, trust tier, signature expectations (PGP/cosign/PKI), fetch windows, rate limits, and time anchors.
1.2 Canonical model (normalized)
Every incoming statement becomes a set of VexClaim records:
VexClaim
- providerId           // 'redhat', 'suse', 'ubuntu', 'github', 'vendorX'
- vulnId               // 'CVE-2025-12345', 'GHSA-xxxx', canonicalized
- productKey           // canonical product identity (see §2.2)
- status               // affected | not_affected | fixed | under_investigation
- justification?       // for 'not_affected'/'affected' where provided
- introducedVersion?   // semantics per provider (range or exact)
- fixedVersion?        // where provided (range or exact)
- lastObserved         // timestamp from source or fetch time
- provenance           // doc digest, signature status, fetch URI, line/offset anchors
- evidence[]           // raw source snippets for explainability
- supersedes?          // optional cross-doc chain (docDigest → docDigest)
1.3 Exports (consumption)
- 
VexConsensus per (vulnId, productKey)with:- rollupStatus(after policy weights/justification gates),
- sources[](winning + losing claims with weights & reasons),
- policyRevisionId(identifier of the Excititor policy used),
- consensusDigest(stable SHA‑256 over canonical JSON).
 
- 
Raw claims export for auditing (unchanged, with provenance). 
- 
Provider snapshots (per source, last N days) for operator debugging. 
- 
Index optimized for backend joins: (productKey, vulnId) → (status, confidence, sourceSet).
All exports are deterministic, and (optionally) attested via DSSE and logged to Rekor v2.
2) Identity model — products & joins
2.1 Vuln identity
- Accepts CVE, GHSA, vendor IDs (MSRC, RHSA…), distro IDs (DSA/USN/RHSA…) — normalized to vulnIdwith alias sets.
- Alias graph maintained (from Concelier) to map vendor/distro IDs → CVE (primary) and to GHSA where applicable.
2.2 Product identity (productKey)
- Primary: purl(Package URL).
- Secondary links: cpe, OS package NVRA/EVR, NuGet/Maven/Golang identity, and OS package name when purl unavailable.
- Fallback: oci:<registry>/<repo>@<digest>for image‑level VEX.
- Special cases: kernel modules, firmware, platforms → provider‑specific mapping helpers (connector captures provider’s product taxonomy → canonical productKey).
Excititor does not invent identities. If a provider cannot be mapped to purl/CPE/NVRA deterministically, we keep the native product string and mark the claim as non‑joinable; the backend will ignore it unless a policy explicitly whitelists that provider mapping.
3) Storage schema (MongoDB)
Database: excititor
3.1 Collections
vex.providers
_id: providerId
name, homepage, contact
trustTier: enum {vendor, distro, platform, hub, attestation}
signaturePolicy: { type: pgp|cosign|x509|none, keys[], certs[], cosignKeylessRoots[] }
fetch: { baseUrl, kind: http|oci|file, rateLimit, etagSupport, windowDays }
enabled: bool
createdAt, modifiedAt
vex.raw (immutable raw documents)
_id: sha256(doc bytes)
providerId
uri
ingestedAt
contentType
sig: { verified: bool, method: pgp|cosign|x509|none, keyId|certSubject, bundle? }
payload: GridFS pointer (if large)
disposition: kept|replaced|superseded
correlation: { replaces?: sha256, replacedBy?: sha256 }
vex.claims (normalized rows; dedupe on providerId+vulnId+productKey+docDigest)
_id
providerId
vulnId
productKey
status
justification?
introducedVersion?
fixedVersion?
lastObserved
docDigest
provenance { uri, line?, pointer?, signatureState }
evidence[] { key, value, locator }
indices: 
  - {vulnId:1, productKey:1}
  - {providerId:1, lastObserved:-1}
  - {status:1}
  - text index (optional) on evidence.value for debugging
vex.consensus (rollups)
_id: sha256(canonical(vulnId, productKey, policyRevision))
vulnId
productKey
rollupStatus
sources[]: [
  { providerId, status, justification?, weight, lastObserved, accepted:bool, reason }
]
policyRevisionId
evaluatedAt
consensusDigest  // same as _id
indices:
  - {vulnId:1, productKey:1}
  - {policyRevisionId:1, evaluatedAt:-1}
vex.exports (manifest of emitted artifacts)
_id
querySignature
format: raw|consensus|index
artifactSha256
rekor { uuid, index, url }?
createdAt
policyRevisionId
cacheable: bool
vex.cache
querySignature -> exportId (for fast reuse)
ttl, hits
vex.migrations
- ordered migrations applied at bootstrap to ensure indexes.
3.2 Indexing strategy
- Hot path queries use exact (vulnId, productKey)and time‑bounded windows; compound indexes cover both.
- Providers list view by lastObservedfor monitoring staleness.
- vex.consensuskeyed by- (vulnId, productKey, policyRevision)for deterministic reuse.
4) Ingestion pipeline
4.1 Connector contract
public interface IVexConnector
{
    string ProviderId { get; }
    Task FetchAsync(VexConnectorContext ctx, CancellationToken ct);   // raw docs
    Task NormalizeAsync(VexConnectorContext ctx, CancellationToken ct); // raw -> VexClaim[]
}
- Fetch must implement: window scheduling, conditional GET (ETag/If‑Modified‑Since), rate limiting, retry/backoff.
- Normalize parses the format, validates schema, maps product identities deterministically, emits VexClaimrecords with provenance.
4.2 Signature verification (per provider)
- cosign (keyless or keyful) for OCI referrers or HTTP‑served JSON with Sigstore bundles.
- PGP (provider keyrings) for distro/vendor feeds that sign docs.
- x509 (mutual TLS / provider‑pinned certs) where applicable.
- Signature state is stored on vex.raw.sig and copied into provenance.signatureState on claims.
Claims from sources failing signature policy are marked
"signatureState.verified=false"and policy can down‑weight or ignore them.
4.3 Time discipline
- For each doc, prefer provider’s document timestamp; if absent, use fetch time.
- Claims carry lastObservedwhich drives tie‑breaking within equal weight tiers.
5) Normalization: product & status semantics
5.1 Product mapping
- purl first; cpe second; OS package NVRA/EVR mapping helpers (distro connectors) produce purls via canonical tables (e.g., rpm→purl:rpm, deb→purl:deb).
- Where a provider publishes platform‑level VEX (e.g., “RHEL 9 not affected”), connectors expand to known product inventory rules (e.g., map to sets of packages/components shipped in the platform). Expansion tables are versioned and kept per provider; every expansion emits evidence indicating the rule applied.
- If expansion would be speculative, the claim remains platform‑scoped with productKey="platform:redhat:rhel:9"and is flagged non‑joinable; backend can decide to use platform VEX only when Scanner proves the platform runtime.
5.2 Status + justification mapping
- 
Canonical status: affected | not_affected | fixed | under_investigation.
- 
Justifications normalized to a controlled vocabulary (CISA‑aligned), e.g.: - component_not_present
- vulnerable_code_not_in_execute_path
- vulnerable_configuration_unused
- inline_mitigation_applied
- fix_available(with- fixedVersion)
- under_investigation
 
- 
Providers with free‑text justifications are mapped by deterministic tables; raw text preserved as evidence.
6) Consensus algorithm
Goal: produce a stable, explainable rollupStatus per (vulnId, productKey) given possibly conflicting claims.
6.1 Inputs
- 
Set S of VexClaimfor the key.
- 
Excititor policy snapshot: - weights per provider tier and per provider overrides.
- justification gates (e.g., require justification for not_affectedto be acceptable).
- minEvidence rules (e.g., not_affectedmust come from ≥1 vendor or 2 distros).
- signature requirements (e.g., require verified signature for ‘fixed’ to be considered).
 
6.2 Steps
- 
Filter invalid claims by signature policy & justification gates → set S'.
- 
Score each claim: score = weight(provider) * freshnessFactor(lastObserved)where freshnessFactor ∈ [0.8, 1.0] for staleness decay (configurable; small effect).
- 
Aggregate scores per status: W(status) = Σ score(claims with that status).
- 
Pick rollupStatus = argmax_status W(status).
- 
Tie‑breakers (in order): - Higher max single provider score wins (vendor > distro > platform > hub).
- More recent lastObserved wins.
- Deterministic lexicographic order of status (fixed>not_affected>under_investigation>affected) as final tiebreaker.
 
- 
Explain: mark accepted sources ( accepted=true; reason="weight"/"freshness"), mark rejected sources with explicitreason("insufficient_justification","signature_unverified","lower_weight").
The algorithm is pure given S and policy snapshot; result is reproducible and hashed into
consensusDigest.
7) Query & export APIs
All endpoints are versioned under /api/v1/vex.
7.1 Query (online)
POST /claims/search
  body: { vulnIds?: string[], productKeys?: string[], providers?: string[], since?: timestamp, limit?: int, pageToken?: string }
  → { claims[], nextPageToken? }
POST /consensus/search
  body: { vulnIds?: string[], productKeys?: string[], policyRevisionId?: string, since?: timestamp, limit?: int, pageToken?: string }
  → { entries[], nextPageToken? }
POST /resolve
  body: { purls: string[], vulnIds: string[], policyRevisionId?: string }
  → { results: [ { vulnId, productKey, rollupStatus, sources[] } ] }
7.2 Exports (cacheable snapshots)
POST /exports
  body: { signature: { vulnFilter?, productFilter?, providers?, since? }, format: raw|consensus|index, policyRevisionId?: string, force?: bool }
  → { exportId, artifactSha256, rekor? }
GET  /exports/{exportId}        → bytes (application/json or binary index)
GET  /exports/{exportId}/meta   → { signature, policyRevisionId, createdAt, artifactSha256, rekor? }
7.3 Provider operations
GET  /providers                  → provider list & signature policy
POST /providers/{id}/refresh     → trigger fetch/normalize window
GET  /providers/{id}/status      → last fetch, doc counts, signature stats
Auth: service‑to‑service via Authority tokens; operator operations via UI/CLI with RBAC.
8) Attestation integration
- 
Exports can be DSSE‑signed via Signer and logged to Rekor v2 via Attestor (optional but recommended for regulated pipelines). 
- 
vex.exports.rekorstores{uuid, index, url}when present.
- 
Predicate type: https://stella-ops.org/attestations/vex-export/1with fields:- querySignature,- policyRevisionId,- artifactSha256,- createdAt.
 
9) Configuration (YAML)
excititor:
  mongo: { uri: "mongodb://mongo/excititor" }
  s3:
    endpoint: http://minio:9000
    bucket: stellaops
  policy:
    weights:
      vendor: 1.0
      distro: 0.9
      platform: 0.7
      hub: 0.5
      attestation: 0.6
    providerOverrides:
      redhat: 1.0
      suse: 0.95
    requireJustificationForNotAffected: true
    signatureRequiredForFixed: true
    minEvidence:
      not_affected:
        vendorOrTwoDistros: true
  connectors:
    - providerId: redhat
      kind: csaf
      baseUrl: https://access.redhat.com/security/data/csaf/v2/
      signaturePolicy: { type: pgp, keys: [ "…redhat-pgp-key…" ] }
      windowDays: 7
    - providerId: suse
      kind: csaf
      baseUrl: https://ftp.suse.com/pub/projects/security/csaf/
      signaturePolicy: { type: pgp, keys: [ "…suse-pgp-key…" ] }
    - providerId: ubuntu
      kind: openvex
      baseUrl: https://…/vex/
      signaturePolicy: { type: none }
    - providerId: vendorX
      kind: cyclonedx-vex
      ociRef: ghcr.io/vendorx/vex@sha256:…
      signaturePolicy: { type: cosign, cosignKeylessRoots: [ "sigstore-root" ] }
10) Security model
- Input signature verification enforced per provider policy (PGP, cosign, x509).
- Connector allowlists: outbound fetch constrained to configured domains.
- Tenant isolation: per‑tenant DB prefixes or separate DBs; per‑tenant S3 prefixes; per‑tenant policies.
- AuthN/Z: Authority‑issued OpToks; RBAC roles (vex.read,vex.admin,vex.export).
- No secrets in logs; deterministic logging contexts include providerId, docDigest, claim keys.
11) Performance & scale
- 
Targets: - Normalize 10k VEX claims/minute/core.
- Consensus compute ≤ 50 ms for 1k unique (vuln, product)pairs in hot cache.
- Export (consensus) 1M rows in ≤ 60 s on 8 cores with streaming writer.
 
- 
Scaling: - WebService handles control APIs; Worker background services (same image) execute fetch/normalize in parallel with rate‑limits; Mongo writes batched; upserts by natural keys.
- Exports stream straight to S3 (MinIO) with rolling buffers.
 
- 
Caching: - vex.cachemaps query signatures → export; TTL to avoid stampedes; optimistic reuse unless- force.
 
12) Observability
- 
Metrics: - vex.ingest.docs_total{provider}
- vex.normalize.claims_total{provider}
- vex.signature.failures_total{provider,method}
- vex.consensus.conflicts_total{vulnId}
- vex.exports.bytes{format}/- vex.exports.latency_seconds
 
- 
Tracing: spans for fetch, verify, parse, map, consensus, export. 
- 
Dashboards: provider staleness, top conflicting vulns/components, signature posture, export cache hit‑rate. 
13) Testing matrix
- Connectors: golden raw docs → deterministic claims (fixtures per provider/format).
- Signature policies: valid/invalid PGP/cosign/x509 samples; ensure rejects are recorded but not accepted.
- Normalization edge cases: platform‑only claims, free‑text justifications, non‑purl products.
- Consensus: conflict scenarios across tiers; check tie‑breakers; justification gates.
- Performance: 1M‑row export timing; memory ceilings; stream correctness.
- Determinism: same inputs + policy → identical consensusDigestand export bytes.
- API contract tests: pagination, filters, RBAC, rate limits.
14) Integration points
- Backend Policy Engine (in Scanner.WebService): calls POST /resolvewith batched(purl, vulnId)pairs to fetchrollupStatus + sources.
- Concelier: provides alias graph (CVE↔vendor IDs) and may supply VEX‑adjacent metadata (e.g., KEV flag) for policy escalation.
- UI: VEX explorer screens use /claims/searchand/consensus/search; show conflicts & provenance.
- CLI: stellaops vex export --consensus --since 7d --out vex.jsonfor audits.
15) Failure modes & fallback
- Provider unreachable: stale thresholds trigger warnings; policy can down‑weight stale providers automatically (freshness factor).
- Signature outage: continue to ingest but mark signatureState.verified=false; consensus will likely exclude or down‑weight per policy.
- Schema drift: unknown fields are preserved as evidence; normalization rejects only on invalid identity or status.
16) Rollout plan (incremental)
- MVP: OpenVEX + CSAF connectors for 3 major providers (e.g., Red Hat/SUSE/Ubuntu), normalization + consensus + /resolve.
- Signature policies: PGP for distros; cosign for OCI.
- Exports + optional attestation.
- CycloneDX VEX connectors; platform claim expansion tables; UI explorer.
- Scale hardening: export indexes; conflict analytics.
17) Appendix — canonical JSON (stable ordering)
All exports and consensus entries are serialized via VexCanonicalJsonSerializer:
- UTF‑8 without BOM;
- keys sorted (ASCII);
- arrays sorted by (providerId, vulnId, productKey, lastObserved)unless semantic order mandated;
- timestamps in YYYY‑MM‑DDThh:mm:ssZ;
- no insignificant whitespace.