Files
git.stella-ops.org/docs/reachability/hybrid-attestation.md
Vladimir Moushkov 1995883476
Some checks failed
Docs CI / lint-and-preview (push) Has been cancelled
Add Decision Capsules, hybrid reachability, and evidence-linked VEX docs
Introduces new marketing bridge documents for Decision Capsules, Hybrid Reachability, and Evidence-Linked VEX. Updates product vision, README, key features, moat, reachability, and VEX consensus docs to reflect four differentiating capabilities: signed reachability (hybrid static/runtime), deterministic replay, explainable policy with evidence-linked VEX, and sovereign/offline operation. All scan decisions are now described as sealed, reproducible, and audit-grade, with explicit handling of 'Unknown' states and hybrid reachability evidence.
2025-12-11 14:15:07 +02:00

91 lines
6.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Hybrid Reachability Attestation (Graph + Edge-Bundle)
> Decision date: 2025-12-11 · Owners: Scanner Guild, Attestor Guild, Signals Guild, Policy Guild
<!-- TODO: Review for separate approval - updated hybrid attestation introduction -->
## 0. Context: Four Capabilities
This document supports **Signed Reachability**—one of four capabilities no competitor offers together:
1. **Signed Reachability** Every reachability graph is sealed with DSSE; optional edge-bundle attestations for runtime/init/contested paths. Both static call-graph edges and runtime-derived edges can be attested—true hybrid reachability.
2. **Deterministic Replay** Scans run bit-for-bit identical from frozen feeds and analyzer manifests.
3. **Explainable Policy (Lattice VEX)** Evidence-linked VEX decisions with explicit "Unknown" state handling.
4. **Sovereign + Offline Operation** FIPS/eIDAS/GOST/SM/PQC profiles and offline mirrors as first-class toggles.
All evidence is sealed in **Decision Capsules** for audit-grade reproducibility.
---
## 1. Purpose
- Guarantee replayable, signed reachability evidence with **graph-level DSSE** for every scan while enabling **selective edge-level DSSE bundles** when finer provenance or dispute handling is required.
- Keep CI/offline bundles lean (graph-first), but allow auditors/regulators to quarantine or prove individual edges without regenerating whole graphs.
- Support **hybrid reachability** by attesting both static call-graph edges and runtime-derived edges.
## 2. Attestation levels
- **Level 0 (Graph DSSE) — Required**
- Payload: canonical `richgraph-v1` (nodes, edges, roots, graph_hash, analyzer metadata, policy_hash).
- Signature: one DSSE envelope per graph; submit digest to Rekor (or mirror) always.
- CAS: `cas://reachability/graphs/{blake3}` (body) + `cas://reachability/graphs/{blake3}.dsse` (envelope).
- **Level 1 (Edge-Bundle DSSE) — Optional/Selective**
- Payload: batch of edges (size ≤ 512) with per-edge reason, evidence hashes, `symbol_digest`, `purl`, `confidence`, and `phase`.
- Criteria to emit bundles:
- Edge reason is `runtime`, `init_array`/constructors/TLS callbacks, or comes from third-party provenance.
- Edge is contested/flagged in Unknowns registry or under policy quarantine.
- Signature: one DSSE envelope per bundle; Rekor submission **configurable** (default on for contested/high-risk bundles, off for bulk benign bundles in sealed mode).
- CAS: `cas://reachability/edges/{graph_hash}/{bundle_id}` JSON + `.../{bundle_id}.dsse`.
## 3. Producer responsibilities
- **Scanner**
- Always emit Level 0 graph + manifest.
- When criteria match, emit Level 1 bundles; include `bundle_reason` (e.g., `runtime-hit`, `init-root`, `third-party`, `disputed`).
- Canonicalise JSON (sorted keys/arrays) before hashing; BLAKE3 as graph hash, SHA-256 inside bundles.
- For hybrid reachability: tag edges with `source: static` or `source: runtime` to distinguish call-graph derived vs. runtime-observed edges.
- **Attestor/Signer**
- Apply DSSE for both levels; respect sovereign crypto modes (FIPS/GOST/SM/PQC) from environment.
- Rekor: push graph envelope digests; push edge-bundle digests only when `rekor_publish=true` (policy/default for high-risk bundles).
## 4. Consumer responsibilities
- **Signals**
- Ingest graph DSSE as the canonical source; ingest edge-bundles when present and attach to the same `graph_hash`.
- Store per-edge DSSE metadata for quarantine/override flows; surface missing edges as Unknowns only when absent from both graph and bundles.
- **Policy**
- Default trust path: graph DSSE + CAS object.
- When an edge is quarantined/contested, drop it from consideration if an edge-bundle DSSE marks it `revoked=true` or if the Unknowns registry lists it with policy quarantine flag.
- For "evidence-required" rules, require either (a) graph DSSE + policy_hash match **or** (b) edge-bundle DSSE that covers the vulnerable path edges.
- **Replay/Bench/CLI**
- `stella graph verify` should accept `--graph {hash}` and optional `--edge-bundles` to validate deeper provenance offline.
## 5. Verification and quarantine flows
- **Happy path**: verify graph DSSE → verify Rekor inclusion (or mirror) → hash graph body → match `graph_hash` in policy/replay manifest → accept.
- **Dispute/quarantine**: mark specific `edge_id` as `revoked` in an edge-bundle DSSE; Policy/Signals exclude it, recompute reachability, and surface delta in explainers.
- **Offline**: retain graph DSSE and selected edge-bundles inside replay pack; Rekor proofs cached when available.
- **Sovereign Verification Mode**: Even with no internet, all signatures and transparency proofs can be locally verified using Offline Update Kits.
## 6. Performance & storage guardrails
- Default: only graph DSSE is mandatory; edge-bundles capped at 512 edges per envelope and emitted only on criteria above.
- Rekor flood control: cap edge-bundle Rekor submissions per graph (config `reachability.edgeBundles.maxRekorPublishes`, default 5). Others stay CAS-only.
- Determinism: bundle ordering = stable sort by `(bundle_reason, edge_id)`; hash before signing.
## 7. Hybrid Reachability Details
<!-- TODO: Review for separate approval - added hybrid reachability details -->
Stella Ops provides **true hybrid reachability** by combining:
| Signal Type | Source | Attestation |
|-------------|--------|-------------|
| Static call-graph edges | IL/bytecode analysis, framework routing models, entry-point proximity | Graph DSSE (Level 0) |
| Runtime-observed edges | EventPipe, JFR, Node inspector, Go/Rust probes | Edge-bundle DSSE (Level 1) with `source: runtime` |
**Why hybrid matters:**
- Static analysis catches code paths that may not execute during observed runtime
- Runtime analysis catches dynamic dispatch, reflection, and framework-injected paths
- Combining both provides confidence across build and runtime contexts
- Each edge type is separately attestable for audit and dispute resolution
**Evidence linking:** Each edge in the graph or bundle includes `evidenceRefs` pointing to the underlying proof artifacts (static analysis artifacts, runtime traces), enabling **evidence-linked VEX decisions**.
## 8. Open decisions (tracked in Sprint 0401 tasks 5356)
- Rekor publish defaults per deployment tier (regulated vs standard).
- CLI UX for selective bundle verification.
- Bench coverage for edge-bundle verification time/size.