Files
git.stella-ops.org/docs/orchestrator/architecture.md
master 8bbfe4d2d2 feat(rate-limiting): Implement core rate limiting functionality with configuration, decision-making, metrics, middleware, and service registration
- Add RateLimitConfig for configuration management with YAML binding support.
- Introduce RateLimitDecision to encapsulate the result of rate limit checks.
- Implement RateLimitMetrics for OpenTelemetry metrics tracking.
- Create RateLimitMiddleware for enforcing rate limits on incoming requests.
- Develop RateLimitService to orchestrate instance and environment rate limit checks.
- Add RateLimitServiceCollectionExtensions for dependency injection registration.
2025-12-17 18:02:37 +02:00

54 lines
3.2 KiB
Markdown

# Orchestrator Architecture (DOCS-ORCH-32-002)
Last updated: 2025-11-25
## Runtime components
- **WebService**: REST + WebSocket API for DAG definitions, run status, and admin actions; issues idempotency tokens and enforces tenant isolation.
- **Scheduler**: timer/cron runner that instantiates DAG runs from schedules; publishes run intents into per-tenant queues.
- **Worker**: executes DAG steps; pulls from tenant queues, applies resource limits, and reports spans/metrics/logs.
- **Plugin host**: task plugins (HTTP call, queue dispatch, CLI tool, script) loaded from signed bundles; execution is sandboxed with deny-by-default network.
## Data model
- **DAG**: directed acyclic graph with topological order; tie-break lexicographically by step id for determinism.
- **Run**: immutable record with `runId`, `dagVersion`, `tenant`, `inputsHash`, `status`, `traceId`, `startedUtc`, `endedUtc`.
- **Step execution**: each step captures `inputsHash`, `outputsHash`, `status`, `attempt`, `durationMs`, `logsRef`, `metricsRef`.
## Execution flow
1) Client or scheduler creates a run (idempotent on `runToken`, `dagId`, `inputsHash`).
2) Scheduler enqueues run intent into tenant queue.
3) Worker dequeues, reconstructs DAG ordering, and executes steps:
- skip disabled steps;
- apply per-step concurrency, retries, and backoff;
- emit spans/metrics/logs with propagated `traceparent`.
4) Results are persisted append-only; WebSocket pushes status to clients.
## Storage & queues
- PostgreSQL stores DAG specs, versions, and run history (per-tenant tables or tenant key prefix).
- Queues: Redis/PostgreSQL-backed FIFO per tenant; message includes `traceparent`, `runToken`, `dagVersion`, `inputsHash`.
- Artifacts (logs, outputs) referenced by content hash; stored in object storage or PostgreSQL large objects; hashes recorded in run record.
## Security & AOC alignment
- Mandatory `X-Stella-Tenant`; cross-tenant DAGs prohibited.
- Scopes: `orchestrator:read|write|admin`; admin needed for DAG publish/delete.
- AOC: Orchestrator only schedules/executes; no policy/severity decisions. Inputs/outputs immutable; runs replayable.
- Sandboxing: per-step CPU/memory limits; network egress blocked unless step declares allowlist entry.
## Determinism
- Step ordering: topological + lexical tie-breaks.
- Idempotency: `runToken` + `inputsHash`; retries reuse same `traceId`; outputs hashed (lowercase hex).
- Timestamps UTC; NDJSON exports sorted by `(startedUtc, dagId, runId)`.
## Offline posture
- DAG specs and plugins shipped in signed offline bundles; no remote fetch.
- Transparency: export runs/logs/metrics/traces as NDJSON for air-gapped audit.
## Observability
- Traces: spans named `orchestrator.run`, `orchestrator.step` with attributes `tenant`, `dagId`, `runId`, `stepId`, `status`.
- Metrics: `orchestrator_runs_total{tenant,status}`, `orchestrator_run_duration_seconds`, `orchestrator_queue_depth`, `orchestrator_step_retries_total`.
- Logs: structured JSON, redacted, carrying `trace_id`, `tenant`, `dagId`, `runId`, `stepId`.
## Governance & rollout
- DAG publishing requires signature/owner metadata; versions immutable after publish.
- Rollback: schedule new version and disable old; runs stay immutable.
- Upgrade path: workers hot-reload plugins from bundle catalog; scheduler is stateless.