14 KiB
Benchmark Submission Guide
Last Updated: 2025-12-14 Next Review: 2026-03-14
Overview
StellaOps publishes benchmarks for:
- Reachability Analysis - Accuracy of static and runtime path detection
- SBOM Completeness - Component detection and version accuracy
- Vulnerability Detection - Precision, recall, and F1 scores
- Scan Performance - Time, memory, and CPU metrics
- Determinism - Reproducibility of scan outputs
This guide explains how to reproduce, validate, and submit benchmark results.
1. PREREQUISITES
1.1 System Requirements
| Requirement | Minimum | Recommended |
|---|---|---|
| CPU | 4 cores | 8 cores |
| Memory | 8 GB | 16 GB |
| Storage | 50 GB SSD | 100 GB NVMe |
| OS | Ubuntu 22.04 LTS | Ubuntu 22.04 LTS |
| Docker | 24.x | 24.x |
| .NET | 10.0 | 10.0 |
1.2 Environment Setup
# Clone the repository
git clone https://git.stella-ops.org/stella-ops.org/git.stella-ops.org.git
cd git.stella-ops.org
# Install .NET 10 SDK
sudo apt-get update
sudo apt-get install -y dotnet-sdk-10.0
# Install Docker (if not present)
curl -fsSL https://get.docker.com | sh
# Install benchmark dependencies
sudo apt-get install -y \
jq \
b3sum \
hyperfine \
time
# Set determinism environment variables
export TZ=UTC
export LC_ALL=C
export STELLAOPS_DETERMINISM_SEED=42
export STELLAOPS_DETERMINISM_TIMESTAMP="2025-01-01T00:00:00Z"
1.3 Pull Reference Images
# Download standard benchmark images
make benchmark-pull-images
# Or manually:
docker pull alpine:3.19
docker pull debian:12-slim
docker pull ubuntu:22.04
docker pull node:20-alpine
docker pull python:3.12
docker pull mcr.microsoft.com/dotnet/aspnet:8.0
docker pull nginx:1.25
docker pull postgres:16-alpine
2. RUNNING BENCHMARKS
2.1 Full Benchmark Suite
# Run all benchmarks (takes ~30-60 minutes)
make benchmark-all
# Output: results/benchmark-all-$(date +%Y%m%d).json
2.2 Category-Specific Benchmarks
Reachability Benchmark
# Run reachability accuracy benchmarks
make benchmark-reachability
# With specific language filter
make benchmark-reachability LANG=csharp
# Output: results/reachability/benchmark-reachability-$(date +%Y%m%d).json
Performance Benchmark
# Run scan performance benchmarks
make benchmark-performance
# Single image
make benchmark-image IMAGE=alpine:3.19
# Output: results/performance/benchmark-performance-$(date +%Y%m%d).json
SBOM Benchmark
# Run SBOM completeness benchmarks
make benchmark-sbom
# Specific format
make benchmark-sbom FORMAT=cyclonedx
# Output: results/sbom/benchmark-sbom-$(date +%Y%m%d).json
Determinism Benchmark
# Run determinism verification
make benchmark-determinism
# Output: results/determinism/benchmark-determinism-$(date +%Y%m%d).json
2.3 CLI Benchmark Commands
# Performance timing with hyperfine (10 runs)
hyperfine --warmup 2 --runs 10 \
'stellaops scan --image alpine:3.19 --format json --output /dev/null'
# Memory profiling
/usr/bin/time -v stellaops scan --image alpine:3.19 --format json 2>&1 | \
grep "Maximum resident set size"
# CPU profiling (Linux)
perf stat stellaops scan --image alpine:3.19 --format json > /dev/null
# Determinism check (run twice, compare hashes)
stellaops scan --image alpine:3.19 --format json | sha256sum > run1.sha
stellaops scan --image alpine:3.19 --format json | sha256sum > run2.sha
diff run1.sha run2.sha && echo "DETERMINISTIC" || echo "NON-DETERMINISTIC"
3. OUTPUT FORMATS
3.1 Reachability Results Schema
{
"benchmark": "reachability-v1",
"date": "2025-12-14T00:00:00Z",
"scanner_version": "1.3.0",
"scanner_commit": "abc123def",
"environment": {
"os": "ubuntu-22.04",
"arch": "amd64",
"cpu": "Intel Xeon E-2288G",
"memory_gb": 16
},
"summary": {
"total_samples": 200,
"precision": 0.92,
"recall": 0.87,
"f1": 0.894,
"false_positive_rate": 0.08,
"false_negative_rate": 0.13
},
"by_language": {
"java": {
"samples": 50,
"precision": 0.94,
"recall": 0.88,
"f1": 0.909,
"confusion_matrix": {
"tp": 44, "fp": 3, "tn": 2, "fn": 1
}
},
"csharp": {
"samples": 50,
"precision": 0.91,
"recall": 0.86,
"f1": 0.884,
"confusion_matrix": {
"tp": 43, "fp": 4, "tn": 2, "fn": 1
}
},
"typescript": {
"samples": 50,
"precision": 0.89,
"recall": 0.84,
"f1": 0.864,
"confusion_matrix": {
"tp": 42, "fp": 5, "tn": 2, "fn": 1
}
},
"python": {
"samples": 50,
"precision": 0.88,
"recall": 0.83,
"f1": 0.854,
"confusion_matrix": {
"tp": 41, "fp": 5, "tn": 3, "fn": 1
}
}
},
"ground_truth_ref": "datasets/reachability/v2025.12",
"raw_results_ref": "results/reachability/raw/2025-12-14/"
}
3.2 Performance Results Schema
{
"benchmark": "performance-v1",
"date": "2025-12-14T00:00:00Z",
"scanner_version": "1.3.0",
"scanner_commit": "abc123def",
"environment": {
"os": "ubuntu-22.04",
"arch": "amd64",
"cpu": "Intel Xeon E-2288G",
"memory_gb": 16,
"storage": "nvme"
},
"images": [
{
"image": "alpine:3.19",
"size_mb": 7,
"components": 15,
"vulnerabilities": 5,
"runs": 10,
"cold_start": {
"p50_ms": 2800,
"p95_ms": 4200,
"mean_ms": 3100
},
"warm_cache": {
"p50_ms": 1500,
"p95_ms": 2100,
"mean_ms": 1650
},
"memory_peak_mb": 180,
"cpu_time_ms": 1200
},
{
"image": "python:3.12",
"size_mb": 1024,
"components": 300,
"vulnerabilities": 150,
"runs": 10,
"cold_start": {
"p50_ms": 32000,
"p95_ms": 48000,
"mean_ms": 35000
},
"warm_cache": {
"p50_ms": 18000,
"p95_ms": 25000,
"mean_ms": 19500
},
"memory_peak_mb": 1100,
"cpu_time_ms": 28000
}
],
"aggregated": {
"total_images": 8,
"total_runs": 80,
"avg_time_per_mb_ms": 35,
"avg_memory_per_component_kb": 400
}
}
3.3 SBOM Results Schema
{
"benchmark": "sbom-v1",
"date": "2025-12-14T00:00:00Z",
"scanner_version": "1.3.0",
"summary": {
"total_images": 8,
"component_recall": 0.98,
"component_precision": 0.995,
"version_accuracy": 0.96
},
"by_ecosystem": {
"apk": {
"ground_truth_components": 100,
"detected_components": 99,
"correct_versions": 96,
"recall": 0.99,
"precision": 0.99,
"version_accuracy": 0.96
},
"npm": {
"ground_truth_components": 500,
"detected_components": 492,
"correct_versions": 475,
"recall": 0.984,
"precision": 0.998,
"version_accuracy": 0.965
}
},
"formats_tested": ["cyclonedx-1.6", "spdx-3.0.1"]
}
3.4 Determinism Results Schema
{
"benchmark": "determinism-v1",
"date": "2025-12-14T00:00:00Z",
"scanner_version": "1.3.0",
"summary": {
"total_runs": 100,
"bitwise_identical": 100,
"bitwise_fidelity": 1.0,
"semantic_identical": 100,
"semantic_fidelity": 1.0
},
"by_image": {
"alpine:3.19": {
"runs": 20,
"bitwise_identical": 20,
"output_hash": "sha256:abc123..."
},
"python:3.12": {
"runs": 20,
"bitwise_identical": 20,
"output_hash": "sha256:def456..."
}
},
"seed": 42,
"timestamp_frozen": "2025-01-01T00:00:00Z"
}
4. SUBMISSION PROCESS
4.1 Internal Submission (StellaOps Team)
Benchmark results are automatically collected by CI:
# .gitea/workflows/weekly-benchmark.yml triggers:
# - Weekly benchmark runs
# - Results stored in internal dashboard
# - Regression detection against baselines
Manual submission:
# Upload to internal dashboard
make benchmark-submit
# Or via CLI
stellaops benchmark submit \
--file results/benchmark-all-20251214.json \
--dashboard internal
4.2 External Validation Submission
Third parties can validate and submit benchmark results:
Step 1: Fork and Clone
# Fork the benchmark repository
# https://git.stella-ops.org/stella-ops.org/benchmarks
git clone https://git.stella-ops.org/<your-org>/benchmarks.git
cd benchmarks
Step 2: Run Benchmarks
# With StellaOps scanner
make benchmark-all SCANNER=stellaops
# Or with your own tool for comparison
make benchmark-all SCANNER=your-tool
Step 3: Prepare Submission
# Results directory structure
mkdir -p submissions/<your-org>/<date>
# Copy results
cp results/*.json submissions/<your-org>/<date>/
# Add reproduction README
cat > submissions/<your-org>/<date>/README.md <<EOF
# Benchmark Results: <Your Org>
**Date:** $(date -u +%Y-%m-%d)
**Scanner:** <tool-name>
**Version:** <version>
## Environment
- OS: <os>
- CPU: <cpu>
- Memory: <memory>
## Reproduction Steps
<steps>
## Notes
<any observations>
EOF
Step 4: Submit Pull Request
git checkout -b benchmark-results-$(date +%Y%m%d)
git add submissions/
git commit -m "Add benchmark results from <your-org> $(date +%Y-%m-%d)"
git push origin benchmark-results-$(date +%Y%m%d)
# Create PR via web interface or gh CLI
gh pr create --title "Benchmark: <your-org> $(date +%Y-%m-%d)" \
--body "Benchmark results for external validation"
4.3 Submission Review Process
| Step | Action | Timeline |
|---|---|---|
| 1 | PR submitted | Day 0 |
| 2 | Automated validation runs | Day 0 (CI) |
| 3 | Maintainer review | Day 1-3 |
| 4 | Results published (if valid) | Day 3-5 |
| 5 | Dashboard updated | Day 5 |
5. BENCHMARK CATEGORIES
5.1 Reachability Benchmark
Purpose: Measure accuracy of static and runtime reachability analysis.
Ground Truth Source: datasets/reachability/
Test Cases:
- 50+ samples per language (Java, C#, TypeScript, Python, Go)
- Known-reachable vulnerable paths
- Known-unreachable vulnerable code
- Runtime-only reachable code
Scoring:
Precision = TP / (TP + FP)
Recall = TP / (TP + FN)
F1 = 2 * (Precision * Recall) / (Precision + Recall)
Targets:
| Metric | Target | Blocking |
|---|---|---|
| Precision | >= 90% | >= 85% |
| Recall | >= 85% | >= 80% |
| F1 | >= 87% | >= 82% |
5.2 Performance Benchmark
Purpose: Measure scan time, memory usage, and CPU utilization.
Reference Images: See Performance Baselines
Metrics:
- P50/P95 scan time (cold and warm)
- Peak memory usage
- CPU time
- Throughput (images/minute)
Targets:
| Image Category | P50 Time | P95 Time | Max Memory |
|---|---|---|---|
| Minimal (<100MB) | < 5s | < 10s | < 256MB |
| Standard (100-500MB) | < 15s | < 30s | < 512MB |
| Large (500MB-2GB) | < 45s | < 90s | < 1.5GB |
5.3 SBOM Benchmark
Purpose: Measure component detection completeness and accuracy.
Ground Truth Source: Manual SBOM audits of reference images.
Metrics:
- Component recall (found / total)
- Component precision (real / reported)
- Version accuracy (correct / total)
Targets:
| Metric | Target |
|---|---|
| Component Recall | >= 98% |
| Component Precision | >= 99% |
| Version Accuracy | >= 95% |
5.4 Vulnerability Detection Benchmark
Purpose: Measure CVE detection accuracy against known-vulnerable images.
Ground Truth Source: datasets/vulns/ curated CVE lists.
Metrics:
- True positive rate
- False positive rate
- False negative rate
- Precision/Recall/F1
Targets:
| Metric | Target |
|---|---|
| Precision | >= 95% |
| Recall | >= 90% |
| F1 | >= 92% |
5.5 Determinism Benchmark
Purpose: Verify reproducible scan outputs.
Methodology:
- Run same scan N times (default: 20)
- Compare output hashes
- Calculate bitwise fidelity
Targets:
| Metric | Target |
|---|---|
| Bitwise Fidelity | 100% |
| Semantic Fidelity | 100% |
6. COMPARING RESULTS
6.1 Against Baselines
# Compare current run against stored baseline
stellaops benchmark compare \
--baseline results/baseline/2025-Q4.json \
--current results/benchmark-all-20251214.json \
--threshold-p50 0.15 \
--threshold-precision 0.02 \
--fail-on-regression
# Output:
# Performance: PASS (P50 within 15% of baseline)
# Accuracy: PASS (Precision within 2% of baseline)
# Determinism: PASS (100% fidelity)
6.2 Against Other Tools
# Generate comparison report
stellaops benchmark compare-tools \
--stellaops results/stellaops/2025-12-14.json \
--trivy results/trivy/2025-12-14.json \
--grype results/grype/2025-12-14.json \
--output comparison-report.html
6.3 Historical Trends
# Generate trend report (last 12 months)
stellaops benchmark trend \
--period 12m \
--metrics precision,recall,p50_time \
--output trend-report.html
7. TROUBLESHOOTING
7.1 Common Issues
| Issue | Cause | Resolution |
|---|---|---|
| Non-deterministic output | Locale not set | Set LC_ALL=C |
| Memory OOM | Large image | Increase memory limit |
| Slow performance | Cold cache | Pre-pull images |
| Missing components | Ecosystem not supported | Check supported ecosystems |
7.2 Debug Mode
# Enable verbose benchmark logging
make benchmark-all DEBUG=1
# Enable timing breakdown
export STELLAOPS_BENCHMARK_TIMING=1
make benchmark-performance
7.3 Validation Failures
# Check result schema validity
stellaops benchmark validate --file results/benchmark-all.json
# Check against ground truth
stellaops benchmark validate-ground-truth \
--results results/reachability.json \
--ground-truth datasets/reachability/v2025.12
8. REFERENCES
- Performance Baselines
- Accuracy Metrics Framework
- Offline Parity Verification
- Determinism CI Harness
- Ground Truth Datasets
Document Version: 1.0 Target Platform: .NET 10, PostgreSQL >=16