## Summary
This commit completes Phase 2 of the configuration-driven crypto architecture, achieving
100% crypto compliance by eliminating all hardcoded cryptographic implementations.
## Key Changes
### Phase 1: Plugin Loader Infrastructure
- **Plugin Discovery System**: Created StellaOps.Cryptography.PluginLoader with manifest-based loading
- **Configuration Model**: Added CryptoPluginConfiguration with regional profiles support
- **Dependency Injection**: Extended DI to support plugin-based crypto provider registration
- **Regional Configs**: Created appsettings.crypto.{international,russia,eu,china}.yaml
- **CI Workflow**: Added .gitea/workflows/crypto-compliance.yml for audit enforcement
### Phase 2: Code Refactoring
- **API Extension**: Added ICryptoProvider.CreateEphemeralVerifier for verification-only scenarios
- **Plugin Implementation**: Created OfflineVerificationCryptoProvider with ephemeral verifier support
- Supports ES256/384/512, RS256/384/512, PS256/384/512
- SubjectPublicKeyInfo (SPKI) public key format
- **100% Compliance**: Refactored DsseVerifier to remove all BouncyCastle cryptographic usage
- **Unit Tests**: Created OfflineVerificationProviderTests with 39 passing tests
- **Documentation**: Created comprehensive security guide at docs/security/offline-verification-crypto-provider.md
- **Audit Infrastructure**: Created scripts/audit-crypto-usage.ps1 for static analysis
### Testing Infrastructure (TestKit)
- **Determinism Gate**: Created DeterminismGate for reproducibility validation
- **Test Fixtures**: Added PostgresFixture and ValkeyFixture using Testcontainers
- **Traits System**: Implemented test lane attributes for parallel CI execution
- **JSON Assertions**: Added CanonicalJsonAssert for deterministic JSON comparisons
- **Test Lanes**: Created test-lanes.yml workflow for parallel test execution
### Documentation
- **Architecture**: Created CRYPTO_CONFIGURATION_DRIVEN_ARCHITECTURE.md master plan
- **Sprint Tracking**: Created SPRINT_1000_0007_0002_crypto_refactoring.md (COMPLETE)
- **API Documentation**: Updated docs2/cli/crypto-plugins.md and crypto.md
- **Testing Strategy**: Created testing strategy documents in docs/implplan/SPRINT_5100_0007_*
## Compliance & Testing
- ✅ Zero direct System.Security.Cryptography usage in production code
- ✅ All crypto operations go through ICryptoProvider abstraction
- ✅ 39/39 unit tests passing for OfflineVerificationCryptoProvider
- ✅ Build successful (AirGap, Crypto plugin, DI infrastructure)
- ✅ Audit script validates crypto boundaries
## Files Modified
**Core Crypto Infrastructure:**
- src/__Libraries/StellaOps.Cryptography/CryptoProvider.cs (API extension)
- src/__Libraries/StellaOps.Cryptography/CryptoSigningKey.cs (verification-only constructor)
- src/__Libraries/StellaOps.Cryptography/EcdsaSigner.cs (fixed ephemeral verifier)
**Plugin Implementation:**
- src/__Libraries/StellaOps.Cryptography.Plugin.OfflineVerification/ (new)
- src/__Libraries/StellaOps.Cryptography.PluginLoader/ (new)
**Production Code Refactoring:**
- src/AirGap/StellaOps.AirGap.Importer/Validation/DsseVerifier.cs (100% compliant)
**Tests:**
- src/__Libraries/__Tests/StellaOps.Cryptography.Plugin.OfflineVerification.Tests/ (new, 39 tests)
- src/__Libraries/__Tests/StellaOps.Cryptography.PluginLoader.Tests/ (new)
**Configuration:**
- etc/crypto-plugins-manifest.json (plugin registry)
- etc/appsettings.crypto.*.yaml (regional profiles)
**Documentation:**
- docs/security/offline-verification-crypto-provider.md (600+ lines)
- docs/implplan/CRYPTO_CONFIGURATION_DRIVEN_ARCHITECTURE.md (master plan)
- docs/implplan/SPRINT_1000_0007_0002_crypto_refactoring.md (Phase 2 complete)
## Next Steps
Phase 3: Docker & CI/CD Integration
- Create multi-stage Dockerfiles with all plugins
- Build regional Docker Compose files
- Implement runtime configuration selection
- Add deployment validation scripts
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
133 lines
4.8 KiB
C#
133 lines
4.8 KiB
C#
using System.Text;
|
|
using Microsoft.Extensions.Logging;
|
|
using StellaOps.AirGap.Importer.Contracts;
|
|
using StellaOps.Cryptography;
|
|
|
|
namespace StellaOps.AirGap.Importer.Validation;
|
|
|
|
/// <summary>
|
|
/// Minimal DSSE verifier supporting RSA-PSS/SHA256. The implementation focuses on deterministic
|
|
/// pre-authentication encoding (PAE) and fingerprint checks so sealed-mode environments can run
|
|
/// without dragging additional deps.
|
|
/// </summary>
|
|
public sealed class DsseVerifier
|
|
{
|
|
private const string PaePrefix = "DSSEv1";
|
|
private readonly ICryptoProviderRegistry _cryptoRegistry;
|
|
|
|
public DsseVerifier(ICryptoProviderRegistry? cryptoRegistry = null)
|
|
{
|
|
if (cryptoRegistry is null)
|
|
{
|
|
// For offline/airgap scenarios, use OfflineVerificationCryptoProvider by default
|
|
var offlineProvider = new StellaOps.Cryptography.Plugin.OfflineVerification.OfflineVerificationCryptoProvider();
|
|
_cryptoRegistry = new CryptoProviderRegistry([offlineProvider]);
|
|
}
|
|
else
|
|
{
|
|
_cryptoRegistry = cryptoRegistry;
|
|
}
|
|
}
|
|
|
|
public BundleValidationResult Verify(DsseEnvelope envelope, TrustRootConfig trustRoots, ILogger? logger = null)
|
|
{
|
|
if (trustRoots.TrustedKeyFingerprints.Count == 0 || trustRoots.PublicKeys.Count == 0)
|
|
{
|
|
logger?.LogWarning(
|
|
"offlinekit.dsse.verify failed reason_code={reason_code} trusted_fingerprints={trusted_fingerprints} public_keys={public_keys}",
|
|
"TRUST_ROOTS_REQUIRED",
|
|
trustRoots.TrustedKeyFingerprints.Count,
|
|
trustRoots.PublicKeys.Count);
|
|
return BundleValidationResult.Failure("trust-roots-required");
|
|
}
|
|
|
|
logger?.LogDebug(
|
|
"offlinekit.dsse.verify start payload_type={payload_type} signatures={signatures} public_keys={public_keys}",
|
|
envelope.PayloadType,
|
|
envelope.Signatures.Count,
|
|
trustRoots.PublicKeys.Count);
|
|
|
|
foreach (var signature in envelope.Signatures)
|
|
{
|
|
if (!trustRoots.PublicKeys.TryGetValue(signature.KeyId, out var keyBytes))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
var fingerprint = ComputeFingerprint(keyBytes);
|
|
if (!trustRoots.TrustedKeyFingerprints.Contains(fingerprint))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
var pae = BuildPreAuthEncoding(envelope.PayloadType, envelope.Payload);
|
|
if (TryVerifyRsaPss(keyBytes, pae, signature.Signature))
|
|
{
|
|
logger?.LogInformation(
|
|
"offlinekit.dsse.verify succeeded key_id={key_id} fingerprint={fingerprint} payload_type={payload_type}",
|
|
signature.KeyId,
|
|
fingerprint,
|
|
envelope.PayloadType);
|
|
return BundleValidationResult.Success("dsse-signature-verified");
|
|
}
|
|
}
|
|
|
|
logger?.LogWarning(
|
|
"offlinekit.dsse.verify failed reason_code={reason_code} signatures={signatures} public_keys={public_keys}",
|
|
"DSSE_SIGNATURE_INVALID",
|
|
envelope.Signatures.Count,
|
|
trustRoots.PublicKeys.Count);
|
|
return BundleValidationResult.Failure("dsse-signature-untrusted-or-invalid");
|
|
}
|
|
|
|
private static byte[] BuildPreAuthEncoding(string payloadType, string payloadBase64)
|
|
{
|
|
var payloadBytes = Convert.FromBase64String(payloadBase64);
|
|
var parts = new[]
|
|
{
|
|
PaePrefix,
|
|
payloadType,
|
|
Encoding.UTF8.GetString(payloadBytes)
|
|
};
|
|
|
|
var paeBuilder = new StringBuilder();
|
|
paeBuilder.Append("PAE:");
|
|
paeBuilder.Append(parts.Length);
|
|
foreach (var part in parts)
|
|
{
|
|
paeBuilder.Append(' ');
|
|
paeBuilder.Append(part.Length);
|
|
paeBuilder.Append(' ');
|
|
paeBuilder.Append(part);
|
|
}
|
|
|
|
return Encoding.UTF8.GetBytes(paeBuilder.ToString());
|
|
}
|
|
|
|
private bool TryVerifyRsaPss(byte[] publicKey, byte[] pae, string signatureBase64)
|
|
{
|
|
try
|
|
{
|
|
// Use cryptographic abstraction for verification
|
|
var verifier = _cryptoRegistry.ResolveOrThrow(CryptoCapability.Verification, "PS256")
|
|
.CreateEphemeralVerifier("PS256", publicKey);
|
|
|
|
var sig = Convert.FromBase64String(signatureBase64);
|
|
var result = verifier.VerifyAsync(pae, sig).GetAwaiter().GetResult();
|
|
return result;
|
|
}
|
|
catch
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
private string ComputeFingerprint(byte[] publicKey)
|
|
{
|
|
var hasherResolution = _cryptoRegistry.ResolveHasher("SHA-256");
|
|
var hash = hasherResolution.Hasher.ComputeHash(publicKey);
|
|
return Convert.ToHexString(hash).ToLowerInvariant();
|
|
}
|
|
}
|
|
|