- Added ServiceCollectionExtensions for eIDAS crypto providers. - Implemented EidasCryptoProvider for handling eIDAS-compliant signatures. - Created LocalEidasProvider for local signing using PKCS#12 keystores. - Defined SignatureLevel and SignatureFormat enums for eIDAS compliance. - Developed TrustServiceProviderClient for remote signing via TSP. - Added configuration support for eIDAS options in the project file. - Implemented unit tests for SM2 compliance and crypto operations. - Introduced dependency injection extensions for SM software and remote plugins.
316 lines
11 KiB
C#
316 lines
11 KiB
C#
namespace StellaOps.Feedser.BinaryAnalysis.Fingerprinters;
|
|
|
|
using System.Security.Cryptography;
|
|
using System.Text;
|
|
using StellaOps.Feedser.BinaryAnalysis.Models;
|
|
|
|
/// <summary>
|
|
/// Simplified locality-sensitive hash fingerprinter.
|
|
///
|
|
/// NOTE: This is a simplified implementation for proof-of-concept.
|
|
/// Production use should integrate with a full TLSH library (e.g., via P/Invoke to libtlsh).
|
|
///
|
|
/// This implementation captures key TLSH principles:
|
|
/// - Sliding window analysis
|
|
/// - Byte distribution histograms
|
|
/// - Quartile-based digest
|
|
/// - Fuzzy matching with Hamming distance
|
|
/// </summary>
|
|
public sealed class SimplifiedTlshFingerprinter : IBinaryFingerprinter
|
|
{
|
|
private const string Version = "1.0.0-simplified";
|
|
private const int WindowSize = 5;
|
|
private const int BucketCount = 256;
|
|
private const int DigestSize = 32; // 32 bytes = 256 bits
|
|
|
|
public FingerprintMethod Method => FingerprintMethod.TLSH;
|
|
|
|
public async Task<BinaryFingerprint> ExtractAsync(
|
|
string binaryPath,
|
|
string? cveId,
|
|
string? targetFunction = null,
|
|
CancellationToken cancellationToken = default)
|
|
{
|
|
var binaryData = await File.ReadAllBytesAsync(binaryPath, cancellationToken);
|
|
var binaryName = Path.GetFileName(binaryPath);
|
|
return await ExtractAsync(binaryData, binaryName, cveId, targetFunction, cancellationToken);
|
|
}
|
|
|
|
public Task<BinaryFingerprint> ExtractAsync(
|
|
ReadOnlyMemory<byte> binaryData,
|
|
string binaryName,
|
|
string? cveId,
|
|
string? targetFunction = null,
|
|
CancellationToken cancellationToken = default)
|
|
{
|
|
var hash = ComputeLocalitySensitiveHash(binaryData.Span);
|
|
var metadata = ExtractMetadata(binaryData.Span, binaryName);
|
|
|
|
var fingerprint = new BinaryFingerprint
|
|
{
|
|
FingerprintId = $"fingerprint:tlsh:{hash}",
|
|
CveId = cveId,
|
|
Method = FingerprintMethod.TLSH,
|
|
FingerprintValue = hash,
|
|
TargetBinary = binaryName,
|
|
TargetFunction = targetFunction,
|
|
Metadata = metadata,
|
|
ExtractedAt = DateTimeOffset.UtcNow,
|
|
ExtractorVersion = Version
|
|
};
|
|
|
|
return Task.FromResult(fingerprint);
|
|
}
|
|
|
|
public async Task<FingerprintMatchResult> MatchAsync(
|
|
string candidatePath,
|
|
BinaryFingerprint knownFingerprint,
|
|
CancellationToken cancellationToken = default)
|
|
{
|
|
var candidateData = await File.ReadAllBytesAsync(candidatePath, cancellationToken);
|
|
return await MatchAsync(candidateData, knownFingerprint, cancellationToken);
|
|
}
|
|
|
|
public Task<FingerprintMatchResult> MatchAsync(
|
|
ReadOnlyMemory<byte> candidateData,
|
|
BinaryFingerprint knownFingerprint,
|
|
CancellationToken cancellationToken = default)
|
|
{
|
|
var candidateHash = ComputeLocalitySensitiveHash(candidateData.Span);
|
|
var similarity = ComputeSimilarity(candidateHash, knownFingerprint.FingerprintValue);
|
|
|
|
// TLSH matching thresholds:
|
|
// similarity > 0.90: High confidence match
|
|
// similarity > 0.75: Medium confidence match
|
|
// similarity > 0.60: Low confidence match
|
|
var isMatch = similarity >= 0.60;
|
|
var confidence = similarity switch
|
|
{
|
|
>= 0.90 => 0.85, // Tier 4 max confidence
|
|
>= 0.75 => 0.70,
|
|
>= 0.60 => 0.55,
|
|
_ => 0.0
|
|
};
|
|
|
|
var result = new FingerprintMatchResult
|
|
{
|
|
IsMatch = isMatch,
|
|
Similarity = similarity,
|
|
Confidence = confidence,
|
|
MatchedFingerprintId = isMatch ? knownFingerprint.FingerprintId : null,
|
|
Method = FingerprintMethod.TLSH,
|
|
MatchDetails = new Dictionary<string, object>
|
|
{
|
|
["candidate_hash"] = candidateHash,
|
|
["known_hash"] = knownFingerprint.FingerprintValue,
|
|
["hamming_distance"] = ComputeHammingDistance(candidateHash, knownFingerprint.FingerprintValue)
|
|
}
|
|
};
|
|
|
|
return Task.FromResult(result);
|
|
}
|
|
|
|
private static string ComputeLocalitySensitiveHash(ReadOnlySpan<byte> data)
|
|
{
|
|
if (data.Length < WindowSize)
|
|
{
|
|
// For very small data, fall back to regular hash
|
|
return Convert.ToHexString(SHA256.HashData(data)).ToLowerInvariant()[..DigestSize];
|
|
}
|
|
|
|
// Step 1: Compute sliding window triplets (pearson hashing)
|
|
var buckets = new int[BucketCount];
|
|
for (int i = 0; i < data.Length - WindowSize + 1; i++)
|
|
{
|
|
var triplet = ComputeTripletHash(data.Slice(i, WindowSize));
|
|
buckets[triplet % BucketCount]++;
|
|
}
|
|
|
|
// Step 2: Compute quartiles (Q1, Q2, Q3)
|
|
var sorted = buckets.OrderBy(b => b).ToArray();
|
|
var q1 = sorted[BucketCount / 4];
|
|
var q2 = sorted[BucketCount / 2];
|
|
var q3 = sorted[3 * BucketCount / 4];
|
|
|
|
// Step 3: Generate digest based on quartile comparisons
|
|
var digest = new byte[DigestSize];
|
|
for (int i = 0; i < BucketCount && i / 8 < DigestSize; i++)
|
|
{
|
|
var byteIdx = i / 8;
|
|
var bitIdx = i % 8;
|
|
|
|
// Set bit based on quartile position
|
|
if (buckets[i] >= q3)
|
|
{
|
|
digest[byteIdx] |= (byte)(1 << bitIdx);
|
|
}
|
|
else if (buckets[i] >= q2)
|
|
{
|
|
digest[byteIdx] |= (byte)(1 << (bitIdx + 1) % 8);
|
|
}
|
|
}
|
|
|
|
// Step 4: Add length and checksum metadata
|
|
var length = Math.Min(data.Length, 0xFFFF);
|
|
var lengthBytes = BitConverter.GetBytes((ushort)length);
|
|
digest[0] ^= lengthBytes[0];
|
|
digest[1] ^= lengthBytes[1];
|
|
|
|
return Convert.ToHexString(digest).ToLowerInvariant();
|
|
}
|
|
|
|
private static byte ComputeTripletHash(ReadOnlySpan<byte> window)
|
|
{
|
|
// Pearson hashing for the window
|
|
byte hash = 0;
|
|
foreach (var b in window)
|
|
{
|
|
hash = PearsonTable[(hash ^ b) % 256];
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
private static double ComputeSimilarity(string hash1, string hash2)
|
|
{
|
|
if (hash1.Length != hash2.Length)
|
|
{
|
|
return 0.0;
|
|
}
|
|
|
|
var distance = ComputeHammingDistance(hash1, hash2);
|
|
var maxDistance = hash1.Length * 4; // Each hex char = 4 bits
|
|
return 1.0 - ((double)distance / maxDistance);
|
|
}
|
|
|
|
private static int ComputeHammingDistance(string hash1, string hash2)
|
|
{
|
|
var bytes1 = Convert.FromHexString(hash1);
|
|
var bytes2 = Convert.FromHexString(hash2);
|
|
|
|
var distance = 0;
|
|
for (int i = 0; i < Math.Min(bytes1.Length, bytes2.Length); i++)
|
|
{
|
|
var xor = (byte)(bytes1[i] ^ bytes2[i]);
|
|
distance += CountBits(xor);
|
|
}
|
|
|
|
return distance;
|
|
}
|
|
|
|
private static int CountBits(byte b)
|
|
{
|
|
var count = 0;
|
|
while (b != 0)
|
|
{
|
|
count += b & 1;
|
|
b >>= 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
private static FingerprintMetadata ExtractMetadata(ReadOnlySpan<byte> data, string binaryName)
|
|
{
|
|
// Detect binary format from magic bytes
|
|
var format = DetectFormat(data);
|
|
var architecture = DetectArchitecture(data, format);
|
|
|
|
return new FingerprintMetadata
|
|
{
|
|
Architecture = architecture,
|
|
Format = format,
|
|
Compiler = null, // Would require deeper analysis
|
|
OptimizationLevel = null,
|
|
HasDebugSymbols = false, // Simplified
|
|
FileOffset = null,
|
|
RegionSize = data.Length
|
|
};
|
|
}
|
|
|
|
private static string DetectFormat(ReadOnlySpan<byte> data)
|
|
{
|
|
if (data.Length < 4) return "unknown";
|
|
|
|
// ELF: 0x7F 'E' 'L' 'F'
|
|
if (data[0] == 0x7F && data[1] == 'E' && data[2] == 'L' && data[3] == 'F')
|
|
{
|
|
return "ELF";
|
|
}
|
|
|
|
// PE: 'M' 'Z'
|
|
if (data[0] == 'M' && data[1] == 'Z')
|
|
{
|
|
return "PE";
|
|
}
|
|
|
|
// Mach-O: 0xFEEDFACE or 0xFEEDFACF (32/64-bit)
|
|
if (data.Length >= 4)
|
|
{
|
|
var magic = BitConverter.ToUInt32(data[..4]);
|
|
if (magic == 0xFEEDFACE || magic == 0xFEEDFACF ||
|
|
magic == 0xCEFAEDFE || magic == 0xCFFAEDFE)
|
|
{
|
|
return "Mach-O";
|
|
}
|
|
}
|
|
|
|
return "unknown";
|
|
}
|
|
|
|
private static string DetectArchitecture(ReadOnlySpan<byte> data, string format)
|
|
{
|
|
if (format == "ELF" && data.Length >= 18)
|
|
{
|
|
var machine = BitConverter.ToUInt16(data.Slice(18, 2));
|
|
return machine switch
|
|
{
|
|
0x3E => "x86_64",
|
|
0x03 => "x86",
|
|
0xB7 => "aarch64",
|
|
0x28 => "armv7",
|
|
_ => "unknown"
|
|
};
|
|
}
|
|
|
|
if (format == "PE" && data.Length >= 0x3C + 4)
|
|
{
|
|
// PE offset is at 0x3C
|
|
var peOffset = BitConverter.ToInt32(data.Slice(0x3C, 4));
|
|
if (peOffset > 0 && peOffset + 6 < data.Length)
|
|
{
|
|
var machine = BitConverter.ToUInt16(data.Slice(peOffset + 4, 2));
|
|
return machine switch
|
|
{
|
|
0x8664 => "x86_64",
|
|
0x014C => "x86",
|
|
0xAA64 => "aarch64",
|
|
_ => "unknown"
|
|
};
|
|
}
|
|
}
|
|
|
|
return "unknown";
|
|
}
|
|
|
|
// Pearson hash lookup table
|
|
private static readonly byte[] PearsonTable = new byte[256]
|
|
{
|
|
// Standard Pearson hash permutation table
|
|
98, 6, 85, 150, 36, 23, 112, 164, 135, 207, 169, 5, 26, 64, 165, 219,
|
|
61, 20, 68, 89, 130, 63, 52, 102, 24, 229, 132, 245, 80, 216, 195, 115,
|
|
90, 168, 156, 203, 177, 120, 2, 190, 188, 7, 100, 185, 174, 243, 162, 10,
|
|
237, 18, 253, 225, 8, 208, 172, 244, 255, 126, 101, 79, 145, 235, 228, 121,
|
|
123, 251, 67, 250, 161, 0, 107, 97, 241, 111, 181, 82, 249, 33, 69, 55,
|
|
59, 153, 29, 9, 213, 167, 84, 93, 30, 46, 94, 75, 151, 114, 73, 222,
|
|
197, 96, 210, 45, 16, 227, 248, 202, 51, 152, 252, 125, 81, 206, 215, 186,
|
|
39, 158, 178, 187, 131, 136, 1, 49, 50, 17, 141, 91, 47, 129, 60, 99,
|
|
154, 35, 86, 171, 105, 34, 38, 200, 147, 58, 77, 118, 173, 246, 76, 254,
|
|
133, 232, 196, 144, 198, 124, 53, 4, 108, 74, 223, 234, 134, 230, 157, 139,
|
|
189, 205, 199, 128, 176, 19, 211, 236, 127, 192, 231, 70, 233, 88, 146, 44,
|
|
183, 201, 22, 83, 13, 214, 116, 109, 159, 32, 95, 226, 140, 220, 57, 12,
|
|
221, 31, 209, 182, 143, 92, 149, 184, 148, 62, 113, 65, 37, 27, 106, 166,
|
|
3, 14, 204, 72, 21, 41, 56, 66, 28, 193, 40, 217, 25, 54, 179, 117,
|
|
238, 87, 240, 155, 180, 170, 242, 212, 191, 163, 78, 218, 137, 194, 175, 110,
|
|
43, 119, 224, 71, 122, 142, 42, 160, 104, 48, 247, 103, 15, 11, 138, 239
|
|
};
|
|
}
|