Files
git.stella-ops.org/docs/ops/scheduler-worker-grafana-dashboard.json
Vladimir Moushkov 4d932cc1ba
Some checks failed
Docs CI / lint-and-preview (push) Has been cancelled
feat: Implement runner execution pipeline with planner dispatch and execution services
- Introduced RunnerBackgroundService to handle execution of runner segments.
- Added RunnerExecutionService for processing segments and aggregating results.
- Implemented PlannerQueueDispatchService to manage dispatching of planner messages.
- Created PlannerQueueDispatcherBackgroundService for leasing and processing planner queue messages.
- Developed ScannerReportClient for interacting with the scanner service.
- Enhanced observability with SchedulerWorkerMetrics for tracking planner and runner performance.
- Added comprehensive documentation for the new runner execution pipeline and observability metrics.
- Implemented event emission for rescan activity and scanner report readiness.
2025-10-27 18:57:35 +02:00

262 lines
5.5 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"title": "Scheduler Worker Planning & Rescan",
"uid": "scheduler-worker-observability",
"schemaVersion": 38,
"version": 1,
"editable": true,
"timezone": "",
"graphTooltip": 0,
"time": {
"from": "now-24h",
"to": "now"
},
"templating": {
"list": [
{
"name": "datasource",
"type": "datasource",
"query": "prometheus",
"hide": 0,
"refresh": 1,
"current": {}
},
{
"name": "mode",
"label": "Mode",
"type": "query",
"datasource": {
"type": "prometheus",
"uid": "${datasource}"
},
"query": "label_values(scheduler_planner_runs_total, mode)",
"refresh": 1,
"multi": true,
"includeAll": true,
"allValue": ".*",
"current": {
"selected": false,
"text": "All",
"value": ".*"
}
}
]
},
"annotations": {
"list": []
},
"panels": [
{
"id": 1,
"title": "Planner Runs per Status",
"type": "timeseries",
"datasource": {
"type": "prometheus",
"uid": "${datasource}"
},
"fieldConfig": {
"defaults": {
"unit": "ops",
"displayName": "{{status}}"
},
"overrides": []
},
"options": {
"legend": {
"displayMode": "table",
"placement": "bottom"
}
},
"targets": [
{
"expr": "sum by (status) (rate(scheduler_planner_runs_total{mode=~\"$mode\"}[5m]))",
"legendFormat": "{{status}}",
"refId": "A"
}
],
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 0
}
},
{
"id": 2,
"title": "Planner Latency P95 (s)",
"type": "timeseries",
"datasource": {
"type": "prometheus",
"uid": "${datasource}"
},
"fieldConfig": {
"defaults": {
"unit": "s"
},
"overrides": []
},
"options": {
"legend": {
"displayMode": "table",
"placement": "bottom"
}
},
"targets": [
{
"expr": "histogram_quantile(0.95, sum by (le) (rate(scheduler_planner_latency_seconds_bucket{mode=~\"$mode\"}[5m])))",
"legendFormat": "p95",
"refId": "A"
}
],
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 0
}
},
{
"id": 3,
"title": "Runner Segments per Status",
"type": "timeseries",
"datasource": {
"type": "prometheus",
"uid": "${datasource}"
},
"fieldConfig": {
"defaults": {
"unit": "ops",
"displayName": "{{status}}"
},
"overrides": []
},
"options": {
"legend": {
"displayMode": "table",
"placement": "bottom"
}
},
"targets": [
{
"expr": "sum by (status) (rate(scheduler_runner_segments_total{mode=~\"$mode\"}[5m]))",
"legendFormat": "{{status}}",
"refId": "A"
}
],
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 8
}
},
{
"id": 4,
"title": "New Findings per Severity",
"type": "timeseries",
"datasource": {
"type": "prometheus",
"uid": "${datasource}"
},
"fieldConfig": {
"defaults": {
"unit": "ops",
"displayName": "{{severity}}"
},
"overrides": []
},
"options": {
"legend": {
"displayMode": "table",
"placement": "bottom"
}
},
"targets": [
{
"expr": "sum(rate(scheduler_runner_delta_critical_total{mode=~\"$mode\"}[5m]))",
"legendFormat": "critical",
"refId": "A"
},
{
"expr": "sum(rate(scheduler_runner_delta_high_total{mode=~\"$mode\"}[5m]))",
"legendFormat": "high",
"refId": "B"
},
{
"expr": "sum(rate(scheduler_runner_delta_total{mode=~\"$mode\"}[5m]))",
"legendFormat": "total",
"refId": "C"
}
],
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 8
}
},
{
"id": 5,
"title": "Runner Backlog by Schedule",
"type": "table",
"datasource": {
"type": "prometheus",
"uid": "${datasource}"
},
"fieldConfig": {
"defaults": {
"displayName": "{{scheduleId}}",
"unit": "none"
},
"overrides": []
},
"options": {
"showHeader": true
},
"targets": [
{
"expr": "max by (scheduleId) (scheduler_runner_backlog{mode=~\"$mode\"})",
"format": "table",
"refId": "A"
}
],
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 16
}
},
{
"id": 6,
"title": "Active Runs",
"type": "stat",
"datasource": {
"type": "prometheus",
"uid": "${datasource}"
},
"fieldConfig": {
"defaults": {
"unit": "none"
},
"overrides": []
},
"options": {
"orientation": "horizontal",
"textMode": "value"
},
"targets": [
{
"expr": "sum(scheduler_runs_active{mode=~\"$mode\"})",
"refId": "A"
}
],
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 16
}
}
]
}