# Feedser CVE & KEV Connector Operations This playbook equips operators with the steps required to roll out and monitor the CVE Services and CISA KEV connectors across environments. ## 1. CVE Services Connector (`source:cve:*`) ### 1.1 Prerequisites - CVE Services API credentials (organisation ID, user ID, API key) with access to the JSON 5 API. - Network egress to `https://cveawg.mitre.org` (or a mirrored endpoint) from the Feedser workers. - Updated `feedser.yaml` (or the matching environment variables) with the following section: ```yaml feedser: sources: cve: baseEndpoint: "https://cveawg.mitre.org/api/" apiOrg: "ORG123" apiUser: "user@example.org" apiKeyFile: "/var/run/secrets/feedser/cve-api-key" pageSize: 200 maxPagesPerFetch: 5 initialBackfill: "30.00:00:00" requestDelay: "00:00:00.250" failureBackoff: "00:10:00" ``` > ℹ️ Store the API key outside source control. When using `apiKeyFile`, mount the secret file into the container/host; alternatively supply `apiKey` via `FEEDSER_SOURCES__CVE__APIKEY`. ### 1.2 Smoke Test (staging) 1. Deploy the updated configuration and restart the Feedser service so the connector picks up the credentials. 2. Trigger one end-to-end cycle: - Feedser CLI: `stella db jobs run source:cve:fetch --and-then source:cve:parse --and-then source:cve:map` - REST fallback: `POST /jobs/run { "kind": "source:cve:fetch", "chain": ["source:cve:parse", "source:cve:map"] }` 3. Observe the following metrics (exported via OTEL meter `StellaOps.Feedser.Source.Cve`): - `cve.fetch.attempts`, `cve.fetch.success`, `cve.fetch.failures`, `cve.fetch.unchanged` - `cve.parse.success`, `cve.parse.failures`, `cve.parse.quarantine` - `cve.map.success` 4. Verify the MongoDB advisory store contains fresh CVE advisories (`advisoryKey` prefix `cve/`) and that the source cursor (`source_states` collection) advanced. ### 1.3 Production Monitoring - **Dashboards** – Add the counters above plus `feedser.range.primitives` (filtered by `scheme=semver` or `scheme=vendor`) to the Feedser overview board. Alert when: - `rate(cve.fetch.failures[5m]) > 0` - `rate(cve.map.success[15m]) == 0` while fetch attempts continue - `sum_over_time(cve.parse.quarantine[1h]) > 0` - **Logs** – Watch for `CveConnector` warnings such as `Failed fetching CVE record` or schema validation errors (`Malformed CVE JSON`). These are emitted with the CVE ID and document identifier for triage. - **Backfill window** – operators can tighten or widen the `initialBackfill` / `maxPagesPerFetch` values after validating baseline throughput. Update the config and restart the worker to apply changes. ## 2. CISA KEV Connector (`source:kev:*`) ### 2.1 Prerequisites - Network egress (or mirrored content) for `https://www.cisa.gov/sites/default/files/feeds/known_exploited_vulnerabilities.json`. - No credentials are required, but the HTTP allow-list must include `www.cisa.gov`. - Confirm the following snippet in `feedser.yaml` (defaults shown; tune as needed): ```yaml feedser: sources: kev: feedUri: "https://www.cisa.gov/sites/default/files/feeds/known_exploited_vulnerabilities.json" requestTimeout: "00:01:00" failureBackoff: "00:05:00" ``` ### 2.2 Schema validation & anomaly handling From this sprint the connector validates the KEV JSON payload against `Schemas/kev-catalog.schema.json`. Malformed documents are quarantined, and entries missing a CVE ID are dropped with a warning (`reason=missingCveId`). Operators should treat repeated schema failures as an upstream regression and coordinate with CISA or mirror maintainers. ### 2.3 Smoke Test (staging) 1. Deploy the configuration and restart Feedser. 2. Trigger a pipeline run: - CLI: `stella db jobs run source:kev:fetch --and-then source:kev:parse --and-then source:kev:map` - REST: `POST /jobs/run { "kind": "source:kev:fetch", "chain": ["source:kev:parse", "source:kev:map"] }` 3. Verify the metrics exposed by meter `StellaOps.Feedser.Source.Kev`: - `kev.fetch.attempts`, `kev.fetch.success`, `kev.fetch.unchanged`, `kev.fetch.failures` - `kev.parse.entries` (tag `catalogVersion`), `kev.parse.failures`, `kev.parse.anomalies` (tag `reason`) - `kev.map.advisories` (tag `catalogVersion`) 4. Confirm MongoDB documents exist for the catalog JSON (`raw_documents` & `dtos`) and that advisories with prefix `kev/` are written. ### 2.4 Production Monitoring - Alert when `kev.fetch.success` goes to zero for longer than the expected daily cadence (default: trigger if `rate(kev.fetch.success[8h]) == 0` during business hours). - Track anomaly spikes via `kev.parse.anomalies{reason="missingCveId"}`. A sustained non-zero rate means the upstream catalog contains unexpected records. - The connector logs each validated catalog: `Parsed KEV catalog document … entries=X`. Absence of that log alongside consecutive `kev.fetch.success` counts suggests schema validation failures—correlate with warning-level events in the `StellaOps.Feedser.Source.Kev` logger. ### 2.5 Known good dashboard tiles Add the following panels to the Feedser observability board: | Metric | Recommended visualisation | |--------|---------------------------| | `kev.fetch.success` | Single-stat (last 24 h) with threshold alert | | `rate(kev.parse.entries[1h])` by `catalogVersion` | Stacked area – highlights daily release size | | `sum_over_time(kev.parse.anomalies[1d])` by `reason` | Table – anomaly breakdown | ## 3. Runbook updates - Record staging/production smoke test results (date, catalog version, advisory counts) in your team’s change log. - Add the CVE/KEV job kinds to the standard maintenance checklist so operators can manually trigger them after planned downtime. - Keep this document in sync with future connector changes (for example, new anomaly reasons or additional metrics).