# Enhanced Rollback Intelligence ## Overview Enhanced Rollback Intelligence transforms rollback from a reactive recovery mechanism into a proactive, intelligent system. It provides metric-driven automatic rollback, partial rollback for multi-component releases, rollback impact analysis, and predictive failure detection. This is a best-in-class implementation that minimizes downtime, reduces blast radius, and provides clear decision transparency through comprehensive impact analysis. --- ## Design Principles 1. **Proactive Detection**: Detect degradation before users report issues 2. **Minimal Blast Radius**: Rollback only what's necessary 3. **Predictive Analysis**: Anticipate rollback needs from early signals 4. **Full Transparency**: Every rollback decision is explainable 5. **Safe by Default**: Automatic rollback with human override capability 6. **Evidence-Backed**: All rollback decisions produce audit evidence --- ## Architecture ### Component Overview ``` ┌────────────────────────────────────────────────────────────────────────┐ │ Rollback Intelligence System │ ├────────────────────────────────────────────────────────────────────────┤ │ │ │ ┌──────────────────┐ ┌───────────────────┐ ┌─────────────────┐ │ │ │ MetricsCollector │───▶│ HealthAnalyzer │───▶│ RollbackDecider │ │ │ │ │ │ │ │ │ │ │ └──────────────────┘ └───────────────────┘ └─────────────────┘ │ │ │ │ │ │ │ ▼ ▼ ▼ │ │ ┌──────────────────┐ ┌───────────────────┐ ┌─────────────────┐ │ │ │ BaselineManager │ │ AnomalyDetector │ │ ImpactAnalyzer │ │ │ │ │ │ │ │ │ │ │ └──────────────────┘ └───────────────────┘ └─────────────────┘ │ │ │ │ │ │ │ ▼ ▼ ▼ │ │ ┌──────────────────┐ ┌───────────────────┐ ┌─────────────────┐ │ │ │ PartialRollback │ │ PredictiveEngine │ │ RollbackExecutor│ │ │ │ Planner │ │ │ │ │ │ │ └──────────────────┘ └───────────────────┘ └─────────────────┘ │ │ │ └────────────────────────────────────────────────────────────────────────┘ ``` ### Key Components #### 1. MetricsCollector Aggregates metrics from multiple sources for health analysis: ```csharp public sealed class MetricsCollector { private readonly ImmutableArray _sources; public async Task CollectAsync( Guid deploymentId, MetricsCollectionConfig config, CancellationToken ct) { var metrics = new ConcurrentDictionary(); await Parallel.ForEachAsync(_sources, ct, async (source, ct) => { var sourceMetrics = await source.CollectAsync(deploymentId, config.TimeRange, ct); foreach (var (name, series) in sourceMetrics) { metrics.TryAdd($"{source.Name}:{name}", series); } }); return new MetricsSnapshot { DeploymentId = deploymentId, CollectedAt = _timeProvider.GetUtcNow(), TimeRange = config.TimeRange, Metrics = metrics.ToImmutableDictionary() }; } } public interface IMetricsSource { string Name { get; } Task> CollectAsync( Guid deploymentId, TimeRange range, CancellationToken ct); } // Implementations public sealed class PrometheusMetricsSource : IMetricsSource { } public sealed class DatadogMetricsSource : IMetricsSource { } public sealed class CloudWatchMetricsSource : IMetricsSource { } public sealed class ApplicationInsightsMetricsSource : IMetricsSource { } public sealed class CustomWebhookMetricsSource : IMetricsSource { } ``` #### 2. BaselineManager Maintains and compares deployment baselines: ```csharp public sealed class BaselineManager { public async Task CreateBaselineAsync( Guid releaseId, Guid environmentId, TimeRange stableWindow, CancellationToken ct) { var metrics = await _metricsCollector.CollectAsync( releaseId, new MetricsCollectionConfig { TimeRange = stableWindow }, ct); return new Baseline { Id = Guid.NewGuid(), ReleaseId = releaseId, EnvironmentId = environmentId, CreatedAt = _timeProvider.GetUtcNow(), StableWindow = stableWindow, Metrics = CalculateBaselineMetrics(metrics) }; } private BaselineMetrics CalculateBaselineMetrics(MetricsSnapshot snapshot) { return new BaselineMetrics { // Error rate baseline (P50, P95, P99) ErrorRateP50 = CalculatePercentile(snapshot.GetMetric("error_rate"), 50), ErrorRateP95 = CalculatePercentile(snapshot.GetMetric("error_rate"), 95), ErrorRateP99 = CalculatePercentile(snapshot.GetMetric("error_rate"), 99), // Latency baseline LatencyP50 = CalculatePercentile(snapshot.GetMetric("latency_ms"), 50), LatencyP95 = CalculatePercentile(snapshot.GetMetric("latency_ms"), 95), LatencyP99 = CalculatePercentile(snapshot.GetMetric("latency_ms"), 99), // Throughput baseline ThroughputMean = CalculateMean(snapshot.GetMetric("requests_per_second")), ThroughputStdDev = CalculateStdDev(snapshot.GetMetric("requests_per_second")), // Resource baseline CpuMean = CalculateMean(snapshot.GetMetric("cpu_percent")), MemoryMean = CalculateMean(snapshot.GetMetric("memory_percent")), // Custom metrics CustomMetrics = snapshot.Metrics .Where(m => m.Key.StartsWith("custom:")) .ToDictionary(m => m.Key, m => CalculateMetricBaseline(m.Value)) .ToImmutableDictionary() }; } } public sealed record Baseline { public Guid Id { get; init; } public Guid ReleaseId { get; init; } public Guid EnvironmentId { get; init; } public DateTimeOffset CreatedAt { get; init; } public TimeRange StableWindow { get; init; } public BaselineMetrics Metrics { get; init; } } ``` #### 3. HealthAnalyzer Analyzes current health against baseline: ```csharp public sealed class HealthAnalyzer { public async Task AnalyzeAsync( Guid deploymentId, Baseline baseline, HealthAnalysisConfig config, CancellationToken ct) { var currentMetrics = await _metricsCollector.CollectAsync( deploymentId, new MetricsCollectionConfig { TimeRange = config.AnalysisWindow }, ct); var analysis = new HealthAnalysis { DeploymentId = deploymentId, BaselineId = baseline.Id, AnalyzedAt = _timeProvider.GetUtcNow(), OverallHealth = HealthStatus.Healthy, Signals = new List() }; // Error rate analysis var errorSignal = AnalyzeErrorRate(currentMetrics, baseline, config); analysis.Signals.Add(errorSignal); // Latency analysis var latencySignal = AnalyzeLatency(currentMetrics, baseline, config); analysis.Signals.Add(latencySignal); // Throughput analysis var throughputSignal = AnalyzeThroughput(currentMetrics, baseline, config); analysis.Signals.Add(throughputSignal); // Resource analysis var resourceSignal = AnalyzeResources(currentMetrics, baseline, config); analysis.Signals.Add(resourceSignal); // Custom metrics analysis foreach (var (name, baselineMetric) in baseline.Metrics.CustomMetrics) { var customSignal = AnalyzeCustomMetric(name, currentMetrics, baselineMetric, config); analysis.Signals.Add(customSignal); } // Calculate overall health analysis.OverallHealth = CalculateOverallHealth(analysis.Signals); analysis.RollbackRecommended = ShouldRecommendRollback(analysis); analysis.Confidence = CalculateConfidence(analysis); return analysis; } private HealthSignal AnalyzeErrorRate( MetricsSnapshot current, Baseline baseline, HealthAnalysisConfig config) { var currentP95 = CalculatePercentile(current.GetMetric("error_rate"), 95); var baselineP95 = baseline.Metrics.ErrorRateP95; var deviation = (currentP95 - baselineP95) / Math.Max(baselineP95, 0.001); var status = deviation switch { > 2.0 => SignalStatus.Critical, // 200% above baseline > 1.0 => SignalStatus.Warning, // 100% above baseline > 0.5 => SignalStatus.Degraded, // 50% above baseline _ => SignalStatus.Healthy }; return new HealthSignal { Name = "error_rate", Status = status, CurrentValue = currentP95, BaselineValue = baselineP95, DeviationPercent = deviation * 100, Threshold = config.ErrorRateThreshold, Message = status switch { SignalStatus.Critical => $"Error rate {currentP95:P2} is {deviation:P0} above baseline", SignalStatus.Warning => $"Error rate elevated: {currentP95:P2} vs {baselineP95:P2} baseline", _ => $"Error rate normal: {currentP95:P2}" } }; } } public sealed record HealthAnalysis { public Guid DeploymentId { get; init; } public Guid BaselineId { get; init; } public DateTimeOffset AnalyzedAt { get; init; } public HealthStatus OverallHealth { get; init; } public ImmutableArray Signals { get; init; } public bool RollbackRecommended { get; init; } public double Confidence { get; init; } // 0.0 - 1.0 public string? RecommendationReason { get; init; } } public enum HealthStatus { Healthy, Degraded, Warning, Critical, Unknown } ``` #### 4. AnomalyDetector Detects anomalies in real-time metrics: ```csharp public sealed class AnomalyDetector { private readonly ImmutableArray _algorithms; public async Task DetectAsync( MetricSeries series, AnomalyDetectionConfig config, CancellationToken ct) { var anomalies = new List(); foreach (var algorithm in _algorithms) { var detected = await algorithm.DetectAsync(series, config, ct); anomalies.AddRange(detected); } // Deduplicate and rank var ranked = anomalies .GroupBy(a => a.Timestamp.Ticks / TimeSpan.FromMinutes(1).Ticks) .Select(g => g.OrderByDescending(a => a.Severity).First()) .OrderByDescending(a => a.Severity) .ToImmutableArray(); return new AnomalyReport { Series = series.Name, DetectedAt = _timeProvider.GetUtcNow(), Anomalies = ranked, OverallSeverity = ranked.Any() ? ranked.Max(a => a.Severity) : AnomalySeverity.None }; } } // Anomaly detection algorithms public interface IAnomalyAlgorithm { Task> DetectAsync( MetricSeries series, AnomalyDetectionConfig config, CancellationToken ct); } public sealed class ZScoreAlgorithm : IAnomalyAlgorithm { // Detects values > N standard deviations from mean public async Task> DetectAsync( MetricSeries series, AnomalyDetectionConfig config, CancellationToken ct) { var mean = series.Values.Average(); var stdDev = CalculateStdDev(series.Values, mean); var threshold = config.ZScoreThreshold; return series.DataPoints .Where(dp => Math.Abs((dp.Value - mean) / stdDev) > threshold) .Select(dp => new Anomaly { Timestamp = dp.Timestamp, Value = dp.Value, ExpectedValue = mean, Deviation = (dp.Value - mean) / stdDev, Algorithm = "z_score", Severity = CalculateSeverity((dp.Value - mean) / stdDev, threshold) }) .ToList(); } } public sealed class SlidingWindowAlgorithm : IAnomalyAlgorithm { // Detects sudden changes in moving average } public sealed class SeasonalDecompositionAlgorithm : IAnomalyAlgorithm { // Detects anomalies accounting for daily/weekly patterns } public sealed class IsolationForestAlgorithm : IAnomalyAlgorithm { // ML-based multivariate anomaly detection } ``` #### 5. PredictiveEngine Predicts potential failures from early warning signals: ```csharp public sealed class PredictiveEngine { public async Task PredictAsync( Guid deploymentId, HealthAnalysis currentAnalysis, IReadOnlyList historicalAnalyses, CancellationToken ct) { var prediction = new FailurePrediction { DeploymentId = deploymentId, PredictedAt = _timeProvider.GetUtcNow() }; // Trend analysis var errorTrend = AnalyzeTrend( historicalAnalyses.Select(a => a.GetSignal("error_rate"))); var latencyTrend = AnalyzeTrend( historicalAnalyses.Select(a => a.GetSignal("latency"))); // Pattern matching against known failure patterns var patterns = await _patternStore.GetKnownFailurePatternsAsync(ct); var matchedPatterns = patterns .Where(p => MatchesPattern(currentAnalysis, historicalAnalyses, p)) .ToList(); if (matchedPatterns.Any()) { var bestMatch = matchedPatterns.OrderByDescending(p => p.Confidence).First(); prediction.FailureLikelihood = bestMatch.Confidence; prediction.PredictedFailureType = bestMatch.FailureType; prediction.EstimatedTimeToFailure = bestMatch.TypicalTimeToFailure; prediction.EarlyWarningSignals = bestMatch.MatchedSignals; prediction.RecommendedAction = bestMatch.RecommendedAction; } else { // Extrapolation-based prediction if (errorTrend.Slope > 0 && errorTrend.Confidence > 0.8) { var timeToThreshold = EstimateTimeToThreshold( errorTrend, currentAnalysis.GetSignal("error_rate").Threshold); prediction.FailureLikelihood = errorTrend.Confidence * 0.7; prediction.PredictedFailureType = FailureType.ErrorRateExceeded; prediction.EstimatedTimeToFailure = timeToThreshold; prediction.EarlyWarningSignals = new[] { "error_rate_trending_up" }.ToImmutableArray(); } } return prediction; } private TrendAnalysis AnalyzeTrend(IEnumerable signals) { var values = signals.Select(s => (s.Timestamp, s.CurrentValue)).ToList(); if (values.Count < 3) return TrendAnalysis.Insufficient; // Linear regression var (slope, intercept, rSquared) = LinearRegression(values); return new TrendAnalysis { Slope = slope, Intercept = intercept, Confidence = rSquared, Direction = slope > 0.01 ? TrendDirection.Increasing : slope < -0.01 ? TrendDirection.Decreasing : TrendDirection.Stable }; } } public sealed record FailurePrediction { public Guid DeploymentId { get; init; } public DateTimeOffset PredictedAt { get; init; } public double FailureLikelihood { get; init; } // 0.0 - 1.0 public FailureType? PredictedFailureType { get; init; } public TimeSpan? EstimatedTimeToFailure { get; init; } public ImmutableArray EarlyWarningSignals { get; init; } public RecommendedAction? RecommendedAction { get; init; } } public enum FailureType { ErrorRateExceeded, LatencyDegraded, ThroughputDrop, ResourceExhaustion, MemoryLeak, ConnectionPoolExhaustion, CascadingFailure } ``` #### 6. ImpactAnalyzer Analyzes rollback impact before execution: ```csharp public sealed class ImpactAnalyzer { public async Task AnalyzeAsync( RollbackRequest request, CancellationToken ct) { var analysis = new RollbackImpactAnalysis { RequestId = request.Id, AnalyzedAt = _timeProvider.GetUtcNow() }; // 1. Identify affected components var currentRelease = await _releaseStore.GetAsync(request.CurrentReleaseId, ct); var targetRelease = await _releaseStore.GetAsync(request.TargetReleaseId, ct); analysis.AffectedComponents = currentRelease.Components .Where(c => targetRelease.Components.Any(tc => tc.Name == c.Name && tc.Digest != c.Digest)) .Select(c => new AffectedComponent { Name = c.Name, CurrentDigest = c.Digest, TargetDigest = targetRelease.Components.First(tc => tc.Name == c.Name).Digest, ChangeType = DetermineChangeType(c, targetRelease) }) .ToImmutableArray(); // 2. Analyze downstream dependencies var dependencyGraph = await _dependencyStore.GetGraphAsync( request.EnvironmentId, ct); foreach (var component in analysis.AffectedComponents) { var dependents = dependencyGraph.GetDependents(component.Name); analysis.DownstreamImpact.Add(component.Name, new DependencyImpact { DirectDependents = dependents.Direct.Count, TransitiveDependents = dependents.Transitive.Count, CriticalPathComponents = dependents.OnCriticalPath.ToImmutableArray() }); } // 3. Estimate downtime analysis.EstimatedDowntime = EstimateDowntime(analysis.AffectedComponents, request.Strategy); // 4. Risk assessment analysis.RiskLevel = AssessRisk(analysis); analysis.RiskFactors = IdentifyRiskFactors(analysis); // 5. Data migration considerations analysis.DataMigrationRequired = await CheckDataMigrationAsync( currentRelease, targetRelease, ct); // 6. Feature flag impact analysis.FeatureFlagImpact = await AnalyzeFeatureFlagImpactAsync( currentRelease, targetRelease, ct); // 7. Generate recommendation analysis.Recommendation = GenerateRecommendation(analysis); return analysis; } private RollbackRisk AssessRisk(RollbackImpactAnalysis analysis) { var riskScore = 0; // Component count riskScore += analysis.AffectedComponents.Length * 10; // Downstream impact var totalDependents = analysis.DownstreamImpact.Values.Sum(d => d.TransitiveDependents); riskScore += totalDependents * 5; // Data migration if (analysis.DataMigrationRequired) riskScore += 50; // Critical path var criticalPathCount = analysis.DownstreamImpact.Values .Sum(d => d.CriticalPathComponents.Length); riskScore += criticalPathCount * 20; return riskScore switch { < 20 => RollbackRisk.Low, < 50 => RollbackRisk.Medium, < 100 => RollbackRisk.High, _ => RollbackRisk.Critical }; } } public sealed record RollbackImpactAnalysis { public Guid RequestId { get; init; } public DateTimeOffset AnalyzedAt { get; init; } // What's changing public ImmutableArray AffectedComponents { get; init; } // Who's affected public ImmutableDictionary DownstreamImpact { get; init; } // How long public TimeSpan EstimatedDowntime { get; init; } // How risky public RollbackRisk RiskLevel { get; init; } public ImmutableArray RiskFactors { get; init; } // Special considerations public bool DataMigrationRequired { get; init; } public DataMigrationAnalysis? DataMigration { get; init; } public FeatureFlagImpact? FeatureFlagImpact { get; init; } // Recommendation public RollbackRecommendation Recommendation { get; init; } } public sealed record RollbackRecommendation { public RollbackDecision Decision { get; init; } public string Rationale { get; init; } public ImmutableArray Warnings { get; init; } public ImmutableArray Prerequisites { get; init; } public RollbackStrategy SuggestedStrategy { get; init; } } ``` #### 7. PartialRollbackPlanner Plans rollback of specific components: ```csharp public sealed class PartialRollbackPlanner { public async Task PlanAsync( PartialRollbackRequest request, CancellationToken ct) { var currentRelease = await _releaseStore.GetAsync(request.CurrentReleaseId, ct); var dependencyGraph = await _dependencyStore.GetGraphAsync(request.EnvironmentId, ct); var plan = new PartialRollbackPlan { Id = Guid.NewGuid(), CreatedAt = _timeProvider.GetUtcNow(), RequestedComponents = request.ComponentsToRollback, TargetDigests = new Dictionary() }; // 1. Determine which components to actually rollback var componentsToRollback = new HashSet(request.ComponentsToRollback); // 2. Check for required co-rollbacks (tight coupling) foreach (var component in request.ComponentsToRollback) { var requiredCoRollbacks = dependencyGraph.GetRequiredCoRollbacks(component); foreach (var required in requiredCoRollbacks) { if (!componentsToRollback.Contains(required)) { componentsToRollback.Add(required); plan.AutoIncludedComponents.Add(required, $"Required by {component}"); } } } // 3. Find target digests for each component foreach (var component in componentsToRollback) { var history = await _deploymentHistoryStore.GetComponentHistoryAsync( request.EnvironmentId, component, ct); // Find last known good version var targetVersion = history .Where(h => h.Status == DeploymentStatus.Succeeded) .Where(h => !request.ExcludeDigests.Contains(h.Digest)) .OrderByDescending(h => h.DeployedAt) .Skip(request.VersionsBack - 1) // Default: 1 (previous) .FirstOrDefault(); if (targetVersion == null) { plan.CannotRollback.Add(component, "No previous good version found"); continue; } plan.TargetDigests[component] = targetVersion.Digest; plan.RollbackDetails.Add(new ComponentRollbackDetail { ComponentName = component, CurrentDigest = currentRelease.Components.First(c => c.Name == component).Digest, TargetDigest = targetVersion.Digest, TargetDeployedAt = targetVersion.DeployedAt, VersionsBack = request.VersionsBack }); } // 4. Validate compatibility var compatibility = await ValidateCompatibilityAsync(plan, ct); plan.CompatibilityValidation = compatibility; // 5. Determine execution order plan.ExecutionOrder = DetermineExecutionOrder(plan, dependencyGraph); return plan; } private ImmutableArray DetermineExecutionOrder( PartialRollbackPlan plan, DependencyGraph graph) { // Topological sort based on dependencies // Rollback dependents before dependencies var sorted = new List(); var visited = new HashSet(); void Visit(string component) { if (visited.Contains(component)) return; visited.Add(component); var dependents = graph.GetDependents(component).Direct; foreach (var dependent in dependents.Where(d => plan.TargetDigests.ContainsKey(d))) { Visit(dependent); } sorted.Add(component); } foreach (var component in plan.TargetDigests.Keys) { Visit(component); } return sorted.ToImmutableArray(); } } public sealed record PartialRollbackPlan { public Guid Id { get; init; } public DateTimeOffset CreatedAt { get; init; } // Input public ImmutableArray RequestedComponents { get; init; } // Analysis public ImmutableDictionary AutoIncludedComponents { get; init; } public ImmutableDictionary CannotRollback { get; init; } // Plan public ImmutableDictionary TargetDigests { get; init; } public ImmutableArray RollbackDetails { get; init; } public ImmutableArray ExecutionOrder { get; init; } // Validation public CompatibilityValidation CompatibilityValidation { get; init; } } ``` #### 8. RollbackDecider Makes automated rollback decisions: ```csharp public sealed class RollbackDecider { public async Task DecideAsync( Guid deploymentId, HealthAnalysis healthAnalysis, FailurePrediction? prediction, AutoRollbackPolicy policy, CancellationToken ct) { var decision = new RollbackDecision { DeploymentId = deploymentId, DecidedAt = _timeProvider.GetUtcNow(), HealthAnalysis = healthAnalysis, Prediction = prediction, Policy = policy }; // Check if auto-rollback is enabled if (!policy.Enabled) { decision.Action = RollbackAction.NotifyOnly; decision.Reason = "Auto-rollback disabled by policy"; return decision; } // Check maintenance window if (!IsWithinRollbackWindow(policy)) { decision.Action = RollbackAction.DeferToWindow; decision.Reason = "Outside auto-rollback window"; decision.DeferredUntil = GetNextRollbackWindowStart(policy); return decision; } // Evaluate health signals against policy thresholds var criticalSignals = healthAnalysis.Signals .Where(s => s.Status == SignalStatus.Critical) .ToList(); var warningSignals = healthAnalysis.Signals .Where(s => s.Status == SignalStatus.Warning) .ToList(); // Critical signals: immediate rollback if (criticalSignals.Any()) { decision.Action = RollbackAction.ImmediateRollback; decision.Reason = $"Critical health signals: {string.Join(", ", criticalSignals.Select(s => s.Name))}"; decision.TriggeringSignals = criticalSignals.ToImmutableArray(); decision.SuggestedStrategy = RollbackStrategy.AllAtOnce; return decision; } // Predictive rollback if (prediction != null && prediction.FailureLikelihood >= policy.PredictiveThreshold && prediction.EstimatedTimeToFailure < policy.PredictiveWindow) { decision.Action = RollbackAction.PreemptiveRollback; decision.Reason = $"Predicted failure ({prediction.FailureLikelihood:P0} confidence) " + $"within {prediction.EstimatedTimeToFailure}"; decision.SuggestedStrategy = RollbackStrategy.Rolling; return decision; } // Warning signals: check duration if (warningSignals.Any()) { var oldestWarning = warningSignals.Min(s => s.Timestamp); var warningDuration = _timeProvider.GetUtcNow() - oldestWarning; if (warningDuration >= policy.WarningGracePeriod) { decision.Action = RollbackAction.GracefulRollback; decision.Reason = $"Warning signals persisted for {warningDuration}"; decision.TriggeringSignals = warningSignals.ToImmutableArray(); decision.SuggestedStrategy = RollbackStrategy.Rolling; return decision; } else { decision.Action = RollbackAction.Monitor; decision.Reason = $"Warning signals detected, monitoring for {policy.WarningGracePeriod - warningDuration}"; return decision; } } // All healthy decision.Action = RollbackAction.None; decision.Reason = "All health signals within acceptable thresholds"; return decision; } } public sealed record RollbackDecision { public Guid DeploymentId { get; init; } public DateTimeOffset DecidedAt { get; init; } public RollbackAction Action { get; init; } public string Reason { get; init; } public HealthAnalysis HealthAnalysis { get; init; } public FailurePrediction? Prediction { get; init; } public ImmutableArray? TriggeringSignals { get; init; } public RollbackStrategy? SuggestedStrategy { get; init; } public DateTimeOffset? DeferredUntil { get; init; } public AutoRollbackPolicy Policy { get; init; } } public enum RollbackAction { None, // No action needed Monitor, // Continue monitoring NotifyOnly, // Alert but don't rollback DeferToWindow, // Wait for rollback window GracefulRollback, // Rolling rollback PreemptiveRollback, // Rollback before predicted failure ImmediateRollback // Emergency rollback } ``` --- ## Auto-Rollback Policy ```csharp public sealed record AutoRollbackPolicy { public Guid Id { get; init; } public string Name { get; init; } public Guid EnvironmentId { get; init; } // Enable/disable public bool Enabled { get; init; } // Thresholds public double ErrorRateCriticalThreshold { get; init; } // e.g., 0.10 (10%) public double ErrorRateWarningThreshold { get; init; } // e.g., 0.05 (5%) public double LatencyP95CriticalThreshold { get; init; } // e.g., 5000ms public double LatencyP95WarningThreshold { get; init; } // e.g., 2000ms // Grace periods public TimeSpan WarningGracePeriod { get; init; } // e.g., 5 minutes // Predictive settings public double PredictiveThreshold { get; init; } // e.g., 0.80 (80% confidence) public TimeSpan PredictiveWindow { get; init; } // e.g., 10 minutes // Rollback window public TimeOnly RollbackWindowStart { get; init; } // e.g., 00:00 public TimeOnly RollbackWindowEnd { get; init; } // e.g., 23:59 public ImmutableArray RollbackDays { get; init; } // Notifications public NotificationConfig Notifications { get; init; } // Manual override public bool RequireApprovalForProduction { get; init; } } ``` --- ## API Design ### REST Endpoints ``` # Health Analysis GET /api/v1/deployments/{id}/health # Get current health GET /api/v1/deployments/{id}/health/history # Health history GET /api/v1/deployments/{id}/baselines # List baselines POST /api/v1/deployments/{id}/baselines # Create baseline # Predictions GET /api/v1/deployments/{id}/predictions # Get failure predictions # Impact Analysis POST /api/v1/rollback/analyze # Analyze rollback impact POST /api/v1/rollback/partial/analyze # Analyze partial rollback # Auto-Rollback Policies POST /api/v1/rollback/policies # Create policy GET /api/v1/rollback/policies # List policies PUT /api/v1/rollback/policies/{id} # Update policy DELETE /api/v1/rollback/policies/{id} # Delete policy # Rollback Execution POST /api/v1/rollback/execute # Execute full rollback POST /api/v1/rollback/partial/execute # Execute partial rollback POST /api/v1/rollback/{id}/approve # Approve pending rollback POST /api/v1/rollback/{id}/cancel # Cancel rollback # History GET /api/v1/rollback/history # Rollback history GET /api/v1/rollback/history/{id} # Rollback details GET /api/v1/rollback/history/{id}/evidence # Rollback evidence ``` --- ## Metrics & Observability ### Prometheus Metrics ``` # Health Analysis stella_deployment_health_status{deployment_id, environment, status} stella_deployment_health_signal{deployment_id, signal_name, status} stella_deployment_health_analysis_duration_seconds # Predictions stella_failure_prediction_likelihood{deployment_id, failure_type} stella_failure_prediction_time_to_failure_seconds{deployment_id} stella_failure_predictions_total{outcome} # correct, false_positive, missed # Rollback Decisions stella_rollback_decisions_total{action, environment} stella_rollback_decision_confidence{deployment_id} # Rollback Execution stella_rollback_executions_total{type, strategy, status} stella_rollback_duration_seconds{type, strategy} stella_rollback_components_total{type, status} # Impact stella_rollback_impact_components{deployment_id} stella_rollback_impact_dependents{deployment_id} stella_rollback_impact_risk_level{deployment_id, level} ``` --- ## Evidence Generation Every rollback decision and execution produces evidence: ```csharp public sealed record RollbackEvidence { // Decision context public HealthAnalysis HealthAnalysis { get; init; } public FailurePrediction? Prediction { get; init; } public RollbackDecision Decision { get; init; } // Impact analysis public RollbackImpactAnalysis ImpactAnalysis { get; init; } // Execution public RollbackPlan Plan { get; init; } public RollbackResult Result { get; init; } // Audit public string InitiatedBy { get; init; } // "system:auto" or user ID public string? ApprovedBy { get; init; } public DateTimeOffset InitiatedAt { get; init; } public DateTimeOffset CompletedAt { get; init; } } ``` --- ## Configuration Example ```yaml auto_rollback_policy: name: "production-auto-rollback" environment_id: "prod-001" enabled: true thresholds: error_rate: critical: 0.10 # 10% error rate warning: 0.05 # 5% error rate latency_p95: critical: 5000 # 5 seconds warning: 2000 # 2 seconds throughput_drop: critical: 0.50 # 50% drop warning: 0.25 # 25% drop grace_periods: warning: "00:05:00" # 5 minutes predictive: enabled: true threshold: 0.80 # 80% confidence window: "00:10:00" # 10 minute lookahead rollback_window: enabled: false # Allow 24/7 for production days: [monday, tuesday, wednesday, thursday, friday, saturday, sunday] notifications: on_warning: true on_rollback_initiated: true on_rollback_completed: true channels: - type: slack channel: "#prod-alerts" - type: pagerduty severity: critical approval: require_for_production: false # Auto-rollback without approval ``` --- ## Test Strategy ### Unit Tests - Severity calculation for various health signals - Baseline comparison logic - Anomaly detection algorithms - Impact analysis calculations ### Integration Tests - Full health analysis pipeline - Predictive engine with historical data - Partial rollback planning - Auto-rollback decision flow ### Chaos Tests - Metrics source failures during analysis - Database unavailability - Concurrent rollback requests ### Golden Tests - Deterministic health scoring - Deterministic impact analysis - Evidence packet structure --- ## Migration Path ### Phase 1: Metrics Collection (Week 1-2) - Metrics collector implementation - Prometheus/Datadog sources - Baseline manager ### Phase 2: Health Analysis (Week 3-4) - Health analyzer - Signal evaluation - Anomaly detection ### Phase 3: Impact Analysis (Week 5-6) - Impact analyzer - Dependency graph integration - Risk assessment ### Phase 4: Partial Rollback (Week 7-8) - Partial rollback planner - Compatibility validation - Execution order ### Phase 5: Predictive Engine (Week 9-10) - Trend analysis - Pattern matching - Failure prediction ### Phase 6: Auto-Rollback (Week 11-12) - Rollback decider - Policy management - Automated execution