# Advisory AI architecture > Captures the retrieval, guardrail, and inference packaging requirements defined in the Advisory AI implementation plan and related module guides. ## 1) Goals - Summarise advisories/VEX evidence into operator-ready briefs with citations. - Explain conflicting statements with provenance and trust weights (using VEX Lens & Excititor data). - Suggest remediation plans aligned with Offline Kit deployment models and scheduler follow-ups. - Operate deterministically where possible; cache generated artefacts with digests for audit. ## 2) Pipeline overview ``` +---------------------+ Concelier/VEX Lens | Evidence Retriever | Policy Engine ----> | (vector + keyword) | ---> Context Pack (JSON) Zastava runtime +---------------------+ | v +-------------+ | Prompt | | Assembler | +-------------+ | v +-------------+ | Guarded LLM | | (local/host)| +-------------+ | v +-----------------+ | Citation & | | Validation | +-----------------+ | v +----------------+ | Output cache | | (hash, bundle) | +----------------+ ``` ## 3) Retrieval & context - Hybrid search: vector embeddings (SBERT-compatible) + keyword filters for advisory IDs, PURLs, CVEs. - Context packs include: - Advisory raw excerpts with highlighted sections and source URLs. - VEX statements (normalized tuples + trust metadata). - Policy explain traces for the affected finding. - Runtime/impact hints from Zastava (exposure, entrypoints). - Export-ready remediation data (fixed versions, patches). - **SBOM context retriever** (AIAI-31-002) hydrates: - Version timelines (first/last observed, status, fix availability). - Dependency paths (runtime vs build/test, deduped by coordinate chain). - Tenant environment flags (prod/stage toggles) with optional blast radius summary. - Service-side clamps: max 500 timeline entries, 200 dependency paths, with client-provided toggles for env/blast data. - `AddSbomContextHttpClient(...)` registers the typed HTTP client that calls `/v1/sbom/context`, while `NullSbomContextClient` remains the safe default for environments that have not yet exposed the SBOM service. **Sample configuration** (wire real SBOM base URL + API key): ```csharp services.AddSbomContextHttpClient(options => { options.BaseAddress = new Uri("https://sbom-service.internal"); options.Endpoint = "/v1/sbom/context"; options.ApiKey = configuration["SBOM_SERVICE_API_KEY"]; options.UserAgent = "stellaops-advisoryai/1.0"; options.Tenant = configuration["TENANT_ID"]; }); services.AddAdvisoryPipeline(); ``` After configuration, issue a smoke request (e.g., `ISbomContextRetriever.RetrieveAsync`) during deployment validation to confirm end-to-end connectivity and credentials before enabling Advisory AI endpoints. Retriever requests and results are trimmed/normalized before hashing; metadata (counts, provenance keys) is returned for downstream guardrails. Unit coverage ensures deterministic ordering and flag handling. All context references include `content_hash` and `source_id` enabling verifiable citations. ## 4) Guardrails - Prompt templates enforce structure: summary, conflicts, remediation, references. - Response validator ensures: - No hallucinated advisories (every fact must map to input context). - Citations follow `[n]` indexing referencing actual sources. - Remediation suggestions only cite policy-approved sources (fixed versions, vendor hotfixes). - Moderation/PII filters prevent leaking secrets; responses failing validation are rejected and logged. - Pre-flight guardrails redact secrets (AWS keys, generic API tokens, PEM blobs), block "ignore previous instructions"-style prompt injection attempts, enforce citation presence, and cap prompt payload length (default 16 kB). Guardrail outcomes and redaction counts surface via `advisory_guardrail_blocks` / `advisory_outputs_stored` metrics. ## 5) Deterministic tooling - **Version comparators** — offline semantic version + RPM EVR parsers with range evaluators. Supports chained constraints (`>=`, `<=`, `!=`) used by remediation advice and blast radius calcs. - Registered via `AddAdvisoryDeterministicToolset` for reuse across orchestrator, CLI, and services. - **Orchestration pipeline** — see `orchestration-pipeline.md` for prerequisites, task breakdown, and cross-guild responsibilities before wiring the execution flows. - **Planned extensions** — NEVRA/EVR comparators, ecosystem-specific normalisers, dependency chain scorers (AIAI-31-003 scope). - Exposed via internal interfaces to allow orchestrator/toolchain reuse; all helpers stay side-effect free and deterministic for golden testing. ## 6) Output persistence - Cached artefacts stored in `advisory_ai_outputs` with fields: - `output_hash` (sha256 of JSON response). - `input_digest` (hash of context pack). - `summary`, `conflicts`, `remediation`, `citations`. - `generated_at`, `model_id`, `profile` (Sovereign/FIPS etc.). - `signatures` (optional DSSE if run in deterministic mode). - Offline bundle format contains `summary.md`, `citations.json`, `context_manifest.json`, `signatures/`. ## 7) Profiles & sovereignty - **Profiles:** `default`, `fips-local` (FIPS-compliant local model), `gost-local`, `cloud-openai` (optional, disabled by default). Each profile defines allowed models, key management, and telemetry endpoints. - **CryptoProfile/RootPack integration:** generated artefacts can be signed using configured CryptoProfile to satisfy procurement/trust requirements. ## 8) APIs - `POST /api/v1/advisory/{task}` — executes Summary/Conflict/Remediation pipeline (`task` ∈ `summary|conflict|remediation`). Requests accept `{advisoryKey, artifactId?, policyVersion?, profile, preferredSections?, forceRefresh}` and return sanitized prompt payloads, citations, guardrail metadata, provenance hash, and cache hints. - `GET /api/v1/advisory/outputs/{cacheKey}?taskType=SUMMARY&profile=default` — retrieves cached artefacts for downstream consumers (Console, CLI, Export Center). Guardrail state and provenance hash accompany results. All endpoints accept `profile` parameter (default `fips-local`) and return `output_hash`, `input_digest`, and `citations` for verification. ## 9) Observability - Metrics: `advisory_ai_requests_total{profile,type}`, `advisory_ai_latency_seconds`, `advisory_ai_validation_failures_total`. - Logs: include `output_hash`, `input_digest`, `profile`, `model_id`, `tenant`, `artifacts`. Sensitive context is not logged. - Traces: spans for retrieval, prompt assembly, model inference, validation, cache write. ## 10) Operational controls - Feature flags per tenant (`ai.summary.enabled`, `ai.remediation.enabled`). - Rate limits (per tenant, per profile) enforced by Orchestrator to prevent runaway usage. - Offline/air-gapped deployments run local models packaged with Offline Kit; model weights validated via manifest digests.