# Metrics & SLOs (DOCS-OBS-51-001) Last updated: 2025-12-15 ## Core metrics (platform-wide) - **Requests**: `http_requests_total{tenant,workload,route,status}` (counter); latency histogram `http_request_duration_seconds`. - **Jobs**: `worker_jobs_total{tenant,queue,status}`; `worker_job_duration_seconds`. - **DB**: `db_query_duration_seconds{db,operation}`; `db_pool_in_use`, `db_pool_available`. - **Cache**: `cache_requests_total{result=hit|miss}`; `cache_latency_seconds`. - **Queue depth**: `queue_depth{tenant,queue}` (gauge). - **Errors**: `errors_total{tenant,workload,code}`. - **Custom module metrics**: keep namespaced (e.g., `riskengine_score_duration_seconds`, `notify_delivery_attempts_total`). ## SLOs (suggested) - API availability: 99.9% monthly per public service. - P95 latency: <300 ms for read endpoints; <1 s for write endpoints. - Worker job success: >99% over 30d; P95 job duration set per queue (document locally). - Queue backlog: alert when `queue_depth` > 1000 for 5 minutes per tenant/queue. - Error budget policy: 28-day rolling window; burn-rate alerts at 2× and 14× budget. ## Alert examples - High error rate: `rate(errors_total[5m]) / rate(http_requests_total[5m]) > 0.02`. - Latency regression: `histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket[5m])) by (le,route)) > 0.3`. - Queue backlog: `queue_depth > 1000` for 5m. - Job failures: `rate(worker_jobs_total{status="failed"}[10m]) > 0.01`. ## UX KPIs (triage TTFS) - Targets: - TTFS first evidence p95: <= 1.5s - TTFS skeleton p95: <= 0.2s - Clicks-to-closure median: <= 6 - Evidence completeness avg: >= 90% (>= 3.6/4) ```promql # TTFS first evidence p50/p95 histogram_quantile(0.50, sum(rate(stellaops_ttfs_first_evidence_seconds_bucket[5m])) by (le)) histogram_quantile(0.95, sum(rate(stellaops_ttfs_first_evidence_seconds_bucket[5m])) by (le)) # Clicks-to-closure median histogram_quantile(0.50, sum(rate(stellaops_clicks_to_closure_bucket[5m])) by (le)) # Evidence completeness average percent (0-4 mapped to 0-100) 100 * (sum(rate(stellaops_evidence_completeness_score_sum[5m])) / clamp_min(sum(rate(stellaops_evidence_completeness_score_count[5m])), 1)) / 4 # Budget violations by phase sum(rate(stellaops_performance_budget_violations_total[5m])) by (phase) ``` - Dashboard: `ops/devops/observability/grafana/triage-ttfs.json` - Alerts: `ops/devops/observability/triage-alerts.yaml` ## TTFS Metrics (time-to-first-signal) - Core metrics: - `ttfs_latency_seconds{surface,cache_hit,signal_source,kind,phase,tenant_id}` (histogram) - `ttfs_signal_total{surface,cache_hit,signal_source,kind,phase,tenant_id}` (counter) - `ttfs_cache_hit_total{surface,cache_hit,signal_source,kind,phase,tenant_id}` (counter) - `ttfs_cache_miss_total{surface,cache_hit,signal_source,kind,phase,tenant_id}` (counter) - `ttfs_slo_breach_total{surface,cache_hit,signal_source,kind,phase,tenant_id}` (counter) - `ttfs_error_total{surface,cache_hit,signal_source,kind,phase,tenant_id,error_type,error_code}` (counter) - SLO targets: - P50 < 2s, P95 < 5s (all surfaces) - Warm path P50 < 700ms, P95 < 2.5s - Cold path P95 < 4s ```promql # TTFS latency p50/p95 histogram_quantile(0.50, sum(rate(ttfs_latency_seconds_bucket[5m])) by (le)) histogram_quantile(0.95, sum(rate(ttfs_latency_seconds_bucket[5m])) by (le)) # SLO breach rate (per minute) 60 * sum(rate(ttfs_slo_breach_total[5m])) ``` ## Offline Kit (air-gap) metrics - `offlinekit_import_total{status,tenant_id}` (counter) - `offlinekit_attestation_verify_latency_seconds{attestation_type,success}` (histogram) - `attestor_rekor_success_total{mode}` (counter) - `attestor_rekor_retry_total{reason}` (counter) - `rekor_inclusion_latency{success}` (histogram) ```promql # Import rate by status sum(rate(offlinekit_import_total[5m])) by (status) # Import success rate sum(rate(offlinekit_import_total{status="success"}[5m])) / clamp_min(sum(rate(offlinekit_import_total[5m])), 1) # Attestation verify p95 by type (success only) histogram_quantile(0.95, sum(rate(offlinekit_attestation_verify_latency_seconds_bucket{success="true"}[5m])) by (le, attestation_type)) # Rekor inclusion latency p95 (by success) histogram_quantile(0.95, sum(rate(rekor_inclusion_latency_bucket[5m])) by (le, success)) ``` Dashboard: `docs/observability/dashboards/offline-kit-operations.json` ## Observability hygiene - Tag everything with `tenant`, `workload`, `env`, `region`, `version`. - Keep metric names stable; prefer adding labels over renaming. - No high-cardinality labels (avoid `user_id`, `path`, raw errors); bucket or hash if needed. - Offline: scrape locally (Prometheus/OTLP); ship exports via bundle if required. ## Dashboards - Golden signals per service: traffic, errors, saturation, latency (P50/P95/P99). - Queue dashboards: depth, age, throughput, success/fail rates. - Tracing overlays: link span `status` to error metrics; use exemplars where supported. ## Validation checklist - [ ] Metrics emitted with required tags. - [ ] Cardinality review completed (no unbounded labels). - [ ] Alerts wired to error budget policy. - [ ] Dashboards cover golden signals and queue health.