Add inline DSSE provenance documentation and Mongo schema

- Introduced a new document outlining the inline DSSE provenance for SBOM, VEX, scan, and derived events.
- Defined the Mongo schema for event patches, including key fields for provenance and trust verification.
- Documented the write path for ingesting provenance metadata and backfilling historical events.
- Created CI/CD snippets for uploading DSSE attestations and generating provenance metadata.
- Established Mongo indexes for efficient provenance queries and provided query recipes for various use cases.
- Outlined policy gates for managing VEX decisions based on provenance verification.
- Included UI nudges for displaying provenance information and implementation tasks for future enhancements.

---

Implement reachability lattice and scoring model

- Developed a comprehensive document detailing the reachability lattice and scoring model.
- Defined core types for reachability states, evidence, and mitigations with corresponding C# models.
- Established a scoring policy with base score contributions from various evidence classes.
- Mapped reachability states to VEX gates and provided a clear overview of evidence sources.
- Documented the event graph schema for persisting reachability data in MongoDB.
- Outlined the integration of runtime probes for evidence collection and defined a roadmap for future tasks.

---

Introduce uncertainty states and entropy scoring

- Created a draft document for tracking uncertainty states and their impact on risk scoring.
- Defined core uncertainty states with associated entropy values and evidence requirements.
- Established a schema for storing uncertainty states alongside findings.
- Documented the risk score calculation incorporating uncertainty and its effect on final risk assessments.
- Provided policy guidelines for handling uncertainty in decision-making processes.
- Outlined UI guidelines for displaying uncertainty information and suggested remediation actions.

---

Add Ruby package inventory management

- Implemented Ruby package inventory management with corresponding data models and storage mechanisms.
- Created C# records for Ruby package inventory, artifacts, provenance, and runtime details.
- Developed a repository for managing Ruby package inventory documents in MongoDB.
- Implemented a service for storing and retrieving Ruby package inventories.
- Added unit tests for the Ruby package inventory store to ensure functionality and data integrity.
This commit is contained in:
master
2025-11-13 00:20:33 +02:00
parent 86be324fc0
commit 7040984215
41 changed files with 1955 additions and 76 deletions

View File

@@ -134,8 +134,9 @@ No confidences. Either a fact is proven with listed mechanisms, or it is not cla
* `images { imageDigest, repo, tag?, arch, createdAt, lastSeen }`
* `layers { layerDigest, mediaType, size, createdAt, lastSeen }`
* `links { fromType, fromDigest, artifactId }` // image/layer -> artifact
* `jobs { _id, kind, args, state, startedAt, heartbeatAt, endedAt, error }`
* `lifecycleRules { ruleId, scope, ttlDays, retainIfReferenced, immutable }`
* `jobs { _id, kind, args, state, startedAt, heartbeatAt, endedAt, error }`
* `lifecycleRules { ruleId, scope, ttlDays, retainIfReferenced, immutable }`
* `ruby.packages { _id: scanId, imageDigest, generatedAtUtc, packages[] }` // decoded `RubyPackageInventory` documents for CLI/Policy reuse
### 3.3 Object store layout (RustFS)
@@ -164,9 +165,10 @@ All under `/api/v1/scanner`. Auth: **OpTok** (DPoP/mTLS); RBAC scopes.
```
POST /scans { imageRef|digest, force?:bool } → { scanId }
GET /scans/{id} → { status, imageDigest, artifacts[], rekor? }
GET /sboms/{imageDigest} ?format=cdx-json|cdx-pb|spdx-json&view=inventory|usage → bytes
GET /diff?old=<digest>&new=<digest>&view=inventory|usage → diff.json
GET /scans/{id} → { status, imageDigest, artifacts[], rekor? }
GET /sboms/{imageDigest} ?format=cdx-json|cdx-pb|spdx-json&view=inventory|usage → bytes
GET /scans/{id}/ruby-packages → { scanId, imageDigest, generatedAt, packages[] }
GET /diff?old=<digest>&new=<digest>&view=inventory|usage → diff.json
POST /exports { imageDigest, format, view, attest?:bool } → { artifactId, rekor? }
POST /reports { imageDigest, policyRevision? } → { reportId, rekor? } # delegates to backend policy+vex
GET /catalog/artifacts/{id} → { meta }
@@ -226,6 +228,7 @@ When `scanner.events.enabled = true`, the WebService serialises the signed repor
* The exported metadata (`stellaops.os.*` properties, license list, source package) feeds policy scoring and export pipelines
directly Policy evaluates quiet rules against package provenance while Exporters forward the enriched fields into
downstream JSON/Trivy payloads.
* **Reachability lattice**: analyzers + runtime probes emit `Evidence`/`Mitigation` records (see `docs/reachability/lattice.md`). The lattice engine joins static path evidence, runtime hits (EventPipe/JFR), taint flows, environment gates, and mitigations into `ReachDecision` documents that feed VEX gating and event graph storage.
* Sprint401 introduces `StellaOps.Scanner.Symbols.Native` (DWARF/PDB reader + demangler) and `StellaOps.Scanner.CallGraph.Native`
(function boundary detector + call-edge builder). These libraries feed `FuncNode`/`CallEdge` CAS bundles and enrich reachability
graphs with `{code_id, confidence, evidence}` so Signals/Policy/UI can cite function-level justifications.